Cho tam giác ABC có A = 90 độ , kẻ đường cao AH và trung tuyến AM kẻ HDvuông góc AB , HE vuông góc AC
biết HB = 4,5cm; HC=8cm.
a) Chứng minh BAH = MAC
b) Chứng minh AM vuông góc DE tại K
c) Tính độ dài AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=CM
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
Suy ra: \(\widehat{MAC}=\widehat{BCA}\)
hay \(\widehat{BAH}=\widehat{MAC}\)
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
A, - Xét tam giác ABC có AM là trung tuyến ứng với cạnh huyền .
=> \(AM=\frac{1}{2}BC=CM=BM\)
- Xét tam giác CMA có : \(AM=CM\)
=> Tam giác CMA cân tại M .
=> \(\widehat{MAC}=\widehat{MCA}\) ( tính chất tam giác cân )
Ta lại có : \(\widehat{MCA}+\widehat{CBA}=90^o\) và \(\widehat{HAB}+\widehat{CBA}=90^o\)
=> \(\widehat{MCA}=\widehat{HAB}\)
=> \(\widehat{MAC}=\widehat{HAC}\) ( đpcm )
b, - Áp dụng hệ thức lượng vào tam giác ACH vuông tại H , HE vuông góc với AC có :
\(AH^2=AE.AC\)
- Áp dụng hệ thức lượng vào tam giác ABH vuông tại H , HD vuông góc với AB có :
\(AH^2=AB.AD\)
=> \(AE.AC=AB.AD\left(=AH^2\right)\)
=> \(\frac{AE}{AB}=\frac{AD}{AC}\)
- Xét \(\Delta AED\) và \(\Delta ABC\) có :
\(\left\{{}\begin{matrix}\frac{AE}{AB}=\frac{AD}{AC}\left(cmt\right)\\\widehat{BAC}=90^o\end{matrix}\right.\)
=> \(\Delta AED\) ~ \(\Delta ABC\) ( c - g - c )
=> \(\widehat{AED}=\widehat{ABC}\) ( góc tương ứng )
Mà \(\widehat{ABC}+\widehat{ACB}=90^o\)
=> \(\widehat{AED}+\widehat{ACB}=90^o\)
Mà \(\widehat{MAC}=\widehat{MCA}\) ( cmt câu a )
=> \(\widehat{MAC}+\widehat{AED}=90^o\)
Ta lại có : \(\widehat{MAC}+\widehat{AED}+\widehat{EIA}=180^o\)
=> \(\widehat{EIA}=90^o\)
Vậy AM vuông góc với ED tại K .