K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+9^2=225\)

hay AC=15(cm)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

16 tháng 1 2022

bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=5^2+12^2=169

=>BC=13

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; AB^2=BH*BC; AC^2=CH*CB

=>AH=5*12/13=60/13; BH=5^2/13=25/13; CH=12^2/13=144/13

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{5^2}+\frac{1}{12^2}=\frac{169}{3600}$

$\Rightarrow AH=\frac{60}{13}$ (cm) 

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm) 

8 tháng 9 2021

Áp dụng hệ thức lượng tam giác ABC vuông tại A, đường cao AH

\(AH^2=BH\cdot HC=9\cdot5=45\\ \Rightarrow AH=3\sqrt{5}\left(cm\right)\)

8 tháng 9 2021

Áp dụng hệ thức lượng tam giác ABC vuông tại A, đường cao AH

AH^2=BH⋅HC=9⋅5=45⇒AH=3√5(cm)

29 tháng 10 2021

a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)

Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)

\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)

\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

1 tháng 6 2022

Theo HTL:

AH2 = HB . HC 

       = 4 . 9

       = 36

 AH = 6 cm