Cho tam giác ABC, D là trung điểm của cạnh AB;E là trung điểm của cạnh AC.Chứng minh DE song song với BC và DE=\(\dfrac{1}{2}\) BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(BC^2-AB^2=AC^2\)
\(15^2-9^2=AC^2\)
\(144=AC^2\)
\(AC=12\)(cm)
b)Có BC<AC<AB
=>A<B<C
c) xét tam giác CAB và tam giác CAD có :
CA chung
DA=AB
góc CAB= gócCAD=90 độ
=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)
=>CB=CD(2 cạnh tương ứng )
=>tam giác BCD cân
d) vì A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)
có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)
Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)
Từ (1) =>CM=\(\frac{2}{3}\)CA
=>CM=\(\frac{2}{3}\times7,5\)
=>CM=5(cm)
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>CM=2/3CA=16/3(cm)
c: Gọi giao của d với AC là N
d là trung trực của AC
=>d vuông góc AC tại N và N là trung điểm của AC
=>QN//AD
Xét ΔCAD có
N là trung điểm của AC
NQ//AD
=>Q là trung điểm của CD
Xét ΔCDB có
BQ là trung tuyến
M là trọng tâm
=>B,M,Q thẳng hàng
a, Ta có: AB < AC < BC
=> C < B< A
b, Xét tam giác BCD có CA và DK là đường trung tuyến
CA cắt DK tại M
=> M là trọng tâm tam giác BCD
=> MC= 2/3 AC= 2/3.8= 16/3 cm
c, Xét tam giác ABC và tam giác ADC có:
AB = AD
BAC= DAC= 90°AC chung
=> tam giác ABC = tam giác ADC (c.g.c)
=> ACB= ACD (2 góc tương ứng) và BC = DC ( 2 cạnh tương ứng) (1)
KQ là đường trung trực của AC
=> KQ vuông góc với AC tại E
Xét tam giác KCE và tam giác QCE có:
KCE= QCE
EC chung
KEC= QEC=90°
=> tam giác KCE = tam giác QCE (gcg)
=> KC = QC (2 cạnh tương ứng) (2)
Mà K là trung điểm BC (3)
Từ (1), (2) và (3) suy ra Q là trung điểm của DC
Xét tam giác BCD có M là trong tâm
=> M thuộc đường trung tuyến BQ
=> B, M, Q thẳng hàng
a, Ta có : ∆ ABC vuông tại A ( gt)
-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )
-> AC^2 = BC^2 - AB^2
Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt)
Nên AC^2 = 10^2 - 6^2
-> AC^2 = 100- 36
-> AC^2 = 64
-> AC = 8 cm
Trên tia đối của \(ED\) lấy F sao cho \(ED=EF\)
Xét \(\Delta EAD;\Delta ECF\) có :
\(\left\{{}\begin{matrix}EA=EC\\\widehat{E1}=\widehat{E2}\\ED=EF\end{matrix}\right.\)
\(\Leftrightarrow\Delta EAD=\Delta ECF\left(c-g-c\right)\)
\(\Leftrightarrow\widehat{A}=\widehat{ECF}\)
mà 2 góc này so le trong
\(\Leftrightarrow DE\) // \(BC\left(đpcm\right)\)