cho tam giác ABC vuông tại A đường cao AH. từ H kẻ HD vuông AB; HE vuông AC ( \(D\in AB;E\in AC\))
CM:\(\sqrt{BD\cdot DH}+\sqrt{CE\cdot EH}=\sqrt{AH\cdot BC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12cm
BH=15^2/25=9cm
CH=25-9=16cm
b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDHC
c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)
=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)
Ta có: góc HEA = góc EAD = góc ADH (=900)
=> tứ giác AEHD là hình chữ nhật
=> ED = AH.
Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT
Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)
Xét tam giác MET và tam giác MHT có:
ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)
=> tam giác MET = tam giác MHT (c-c-c)
=> góc MET= góc MHT =900 (2 góc tương ứng) (2)
Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)
=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)
Từ (2)(3) => EM song song với DN
(vì cùng vuông góc với DE " từ vuông góc đến song song")
=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)
=> hình thang EMND là hình thang vuông
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//KH
c: Ta có: AC//HK
AC//HM
HK,HM có điểm chung là H
Do đó: K,H,M thẳng hàng
Ta có: AMHN là hình chữ nhật
=>\(\widehat{NAH}=\widehat{NMH}\)
mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)
nên \(\widehat{NMH}=\widehat{CKH}\)
Xét tứ giác MNCK có CN//MK
nên MNCK là hình thang
Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)
nên MNCK là hình thang cân
d: Ta có: AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là các đường trung tuyến
CO cắt AI tại D
Do đó: D là trọng tâm của ΔCAH
=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)
=>AK=3AD
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông