K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔBNC=ΔCMB

b: Ta có: ΔBNC=ΔCMB

nên \(\widehat{NCB}=\widehat{MBC}\)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)

nên ΔKBC cân tại K

hay KB=KC

1: Xet ΔBCA có

E,D lần lượt là trung điểm của AB,AC

nên ED là đừog trung bình

=>ED//BC và ED=BC/2

Xét ΔGBC có

N,M lần lượt là trung điểm của GB,GC

nên NM là đường trung bình

=>NM//BC và NM=BC/2

=>ED//MN và ED=MN

=>EDMN là hình bình hành

MN+DE=BC/2+BC/2=BC<AB+AC

2 Để MNED là hình chữ nhật thì ED vuông góc EN

=>AG vuông góc BC

=>ΔABC cân tại A

=>AB=AC

3: NK=5NB

=>BK=6BN

=>BK=2BD

->D là trung điểm của BK

Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

=>ABCK là hình bình hành

=>AK//BC

29 tháng 1 2023

Thanks b nha :))

 

19 tháng 9 2016

A B C N M

Xét \(\Delta ABC\) có :

 \(AB=AC\) ( gt )

\(\Rightarrow\Delta ABC\) cân tại \(\widehat{A}\)

\(\Rightarrow\widehat{B}=\widehat{C}\)

Ta có : \(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)

Xét \(\Delta BNC\) và \(\Delta CMB\) có :

  \(CN=BM\left(cmt\right)\)

   \(\widehat{B}=\widehat{C}\left(cmt\right)\)

  \(AC\) là cạnh chung 

Do đó 2 tam giác bằng nhau.

Vậy ...................

19 tháng 9 2016

M là trung điểm của AC

=> AM = MC = AC/2

N là trung điểm của AB

=> AN = NB = AB/2

mà AC = AB (tam giác ABC cân tại A)

=> MC = NB

Xét tam giác BNC và tam giác CMB có:

NB = MC (chứng minh trên)

NBC = MCB (tam giác ABC cân tại A)

BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

17 tháng 7 2016

A B C M N

Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.

\(\Rightarrow\)Góc NBC = Góc MCB

\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)

Xét \(\Delta BNC\)và \(\Delta CMB:\)

\(CN=BM\)( chứng minh trên )

Góc NBC = Góc MCB( chứng minh trên )

Chung cạnh BC

\(\Rightarrow\Delta BNC=\Delta CMB\)

Vậy \(\Delta BNC=\Delta CMB\)

17 tháng 7 2016

Chưa hỉu cho lắm bn giảng thêm đc không

7 tháng 11 2021

giúp mik nhé, mik đang cần gấp

14 tháng 2 2021

1) Ta có: BH vuông góc với AC

               CK vuông góc với AC

      => BH//CK

Chứng minh tương tự ta có: CH//Bk

Xét tứ giác BHCK có:    BH//CK

                                     CH//BK

=> Tứ giác BHCK là hbh

Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng

2.gọi HI cắt BC tại J

Xét tam giác HIK có:  J là trung điểm của HI

                                   M là trung điểm của HK

=> JM là đường trung bình trong tam giác HIK

=> IK//MJ hay IK//BC

Xét tam giác BHJ và tam giác BIJ có;

                HJ=JI

       góc BJH=góc BJI=90

              BJ chung

=> Tam giác BHJ = tam giác BIJ

=> Góc HBJ= góc IBJ

Mà góc HBJ= góc BCK( do BH//CK)

Xét tứ  giác BIKC có:

           KI//BC

góc IBC= góc KCB

=>Tứ giác BIKC là hình thang cân

3.Xét tứ giác GHCK có:     GK//HC  (doBK//HC)

=> Tứ giác GHCK là hình thang

Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)

mà GHC+HCB=90

      KCH+HCA=90

=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB

Xét tam giác ABC có : CH là phân giác của góc ACB

                                   CH là đường cao trong tam giác ABC

=> Tam giác ABC cân tại C

Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C

imagerotate