Cho △ABC vuông tại A, AH là đường cao.
a) Biết BH bằng 3,6m; CH bằng 6,4m. Tính AH,AC,AB và HAC.
b) Qua B kẻ tia Bx // AC. Tia Bx cắt AH tại K. Chứng minh: AH.AK=BH.BC
c) Kẻ KE vuông góc AC tại E. Chứng minh HE = \(\dfrac{3}{5}\)KC với số đo đã cho ở câu a.
d) Gọi I giao điểm các đường phân giác các góc trong của tam giác ABC. Gọi r là khoảng cách từ I đến cạnh BC. Chứng minh: \(\dfrac{r}{AH}\)\(\ge\)\(\dfrac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{144}{13}\left(cm\right)\\AH=\sqrt{\dfrac{25}{13}\cdot\dfrac{144}{13}}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Leftrightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}=23^0\)
\(c,\) Vì AM là trung tuyến ứng ch BC nên \(AM=BM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
Ta có \(MH=MB-HB=6,5-\dfrac{25}{13}=\dfrac{119}{26}\left(cm\right)\)
Vậy \(S_{AMH}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABC vuông tại A
mà AH là đường cao
nên HA^2=HB*HC
c: AI/IH=BA/BH
EC/AE=BC/BA
mà BA/BH=BC/BA
nên AI/IH=EC/AE
=>AI*AE=IH*EC
a: BC=10cm
AH=6*8/10=4,8cm
BH=AB^2/BC=3,6cm
b: Vì BH vuông góc với AH tại H
nên CB là tiếp tuyến của (A';AH)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
a: ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
BC=6,4+3,6=10(cm)
ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>AB^2=3,6*10=36; AC^2=6,4*10=64
=>AB=6cm; AC=8cm
b: ΔABC vuông tại B có BH là đường cao
nên AH*AK=AB^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>AH*AK=BH*BC
c: Xét ΔAEK vuông tại E và ΔAHC vuông tại H có
góc EAK chung
=>ΔAEK đồng dạng với ΔAHC
=>AE/AH=AK/AC
=>AE/AK=AH/AC
Xét ΔAEH và ΔAKC có
AE/AK=AH/AC
góc EAH chung
=>ΔAEH đồng dạng với ΔAKC
=>\(\dfrac{EH}{KC}=\dfrac{AH}{AC}=\dfrac{3}{5}\)
=>HE=3/5KC