cho tam giác ABC vuông tại A . I là tâm đường tròn nội tiếp tam giác có IH vuông góc với BC biết BH=5; CH=12. bán kính đường tròn nội tiếp bằng 6, một cạnh góc vuông =20. tính các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHI và tam giác AKI có:
góc AHI= góc AKI(= 90 độ)
AI chung
góc HAI= góc KAI( phân giác góc A)
=>tam giác AHI= tam giác AKI( g.c.g)
=> HI= IK( cạnh tương ứng)
Xét tam giác BHI và CKI có:
góc BHI= CKI(= 90 độ)
HI= IK( chứng minh trên)
IB= IC( vì là đường trung trực)
=> tam giác BHI= tam giác CKI( c.g.c)
=> BH= CK( cạnh tương ứng) (đpcm)
a, Xét tam giác AHI và tam giác AKI có:
góc AHI= góc AKI(= 90 độ)
AI chung
góc HAI= góc KAI( phân giác góc A)
=>tam giác AHI= tam giác AKI( g.c.g)
=> HI= IK( cạnh tương ứng)
Xét tam giác BHI và CKI có:
góc BHI= CKI(= 90 độ)
HI= IK( chứng minh trên)
IB= IC( vì là đường trung trực)
=> tam giác BHI= tam giác CKI( c.g.c)
=> BH= CK( cạnh tương ứng) (đpcm)
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của các góc BAH và CAH cắt BC lần lượt tại D và E. Gọi O là giao điểm các...- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!