K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Câu 2:

A B C M K H

Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.

Từ giả thiết, ta có:

\(\cdot\) AH // BM (do cùng _I_ BC)

\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)

Suy ra AH là đường trung bình của \(\Delta BMC\)

\(\Rightarrow BM=2AH\)

Xét \(\Delta BMC\) vuông tại B có BK là đường cao

\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)

12 tháng 10 2017

Câu 1:

A B C H E F

Xét \(\Delta ABC\) vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH\times BC\)

Xét \(\Delta HBA\) vuông tại H có HE là đường cao

\(\Rightarrow BH^2=BE\times AB\)

\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)

Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)

Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)

24 tháng 10 2017

Tương tự: https://hoc24.vn/hoi-dap/question/467916.html?pos=1224467

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:

$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$

$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)

Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$

$\Rightarrow EF=HA$

$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:

$AH^2=HB.HC(3)$

Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

25 tháng 7 2016

Tự vẽ hình

a) Xét tứ giác AEHF có: ^EAF=90(gt)

                                       ^AFH=90(gt)

                                       ^AEF=90(gt)

=> Tứ giac AEHF là hình chữ nhật

Gọi O là giao điểm của AH và EF

Vì AEHF là hcn(cmt)

=> OE=OA

=>\(\Delta\)OAE cân tại O

=>^OAE=^OEA

Xét \(\Delta\)ABH vuông tại H(gt)

=>^B+^OAE=90            (1)

Xét \(\Delta\)ABC vuông tại A(gt)

=>^B+^C=90                  (2)

Từ (1) và (2) suy ra: ^OAE=^C

Mà ^OAE=^OEA(cmt)

=>^AEF=^ACB

Xét \(\Delta\)AEF và \(\Delta\)ACB có:

      ^EAF=^CAB=90(gt)

         ^AEF=ACB(cmt)

=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

=>AE.AB=AF.AC

Từ phần b bạn tự làm nhé (^.^)

25 tháng 7 2016

Xin lỗi câu a)Cmr: AE.AB=AF.AC

 

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=BH^2\)

hay \(BE=\dfrac{BH^2}{BA}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)

 

7 tháng 7 2023

Tại sao BH2 bằng với AB4 thế ạ?