cho tam giác ABC có BC=a;CA=b;AB=c. chứng minh rằng:
a) Nếu b2<a2 + c2 thì \(\widehat{B}< 90^o\)
b) Nếu b2>a2 + c2 thì \(\widehat{B}>90^o\)
c) Nếu b2=a2 + c2 thì\(\widehat{B}=90^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc CB
a) Ta có:
AH = BC : 4 = 24 : 4 = 6 (cm)
Diện tích ∆ABC:
24 . 6 : 2 = 72 (cm²)
b) Do D ∈ BC
AH ⊥ BC
⇒ AH ⊥ BD
Ta có:
BD = BC : 3 = 24 : 3 = 8 (cm)
Diện tích ∆ABD:
8 . 6 : 2 = 24 (cm²)
Ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{BC}{DC}=\frac{27}{9}=3\)( vì tam giác ABC và tam giác ADC có chung đường cao kẻ từ đỉnh A)
=> \(\frac{S_{ABC}}{36}=3\)
SABC=3x36=108(cm2)
Đáp số: 108 cm2