Tính tích tất cả các giá trị thực của tham số m để đồ thị hàm số y =m x3- 3mx2+ 3m-3 có hai điểm cực trị A; B sao cho 2AB2- ( OA2+ OB2) =20 .
A. 1
B. ½
C. -17/11
D. 13/ 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đạo hàm y’ = 3x2- 6mx= 3x( x- 2m)
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi :m≠0. (1)
+ Tọa độ các điểm cực trị của đồ thị hàm số là A( 0 ; 3m3) ; B( 2m; -m3)
Ta có: O A → ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3 ( 2 )
Ta thấy A ∈ O y ⇒ O A ≡ O y ⇒ d ( B ; O A ) = d ( B ; O y ) = 2 m (3)
+ Từ (2) và (3) suy ra S= ½. OA.d(B ; OA)=3m4.
Do đó: S ∆ O A B = 48 ⇔ 3 m 4 = 48 ⇔ m = ± 2 (thỏa mãn (1) ).
Chọn D.
Chọn D
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi
2m ≠ 0 ⇔ m ≠ 0 (1)
Khi đó, các điểm cực trị của đồ thị hàm số là
Ta có: O A ⇀ ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3 (2)
Ta thấy A ∈ O y ⇒ O A ≡ O y
⇒ d ( B , O A ) = d ( B , O y ) = 2 m ( 3 )
Từ (2) và (3) suy ra
S ∆ O A B = 1 2 . O A . d ( B , O A ) = 3 m 4
Do đó: S ∆ O A B = 48 ⇔ m = ± 2 (thỏa mãn (1)
Chọn D
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi : 2m ≠ 0 ⇔ m ≠ 0 (1)
Khi đó, các điểm cực trị của đồ thị hàm số là
Đáp án C
Ta có
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi Khi đó và B(2m;0).
Vậy giá trị của m là
Đáp án C
Đạo hàm
y ' = 3 x 2 − 6 m x = 3 x x − 2 m ; y ' = 0 ⇔ x = 0 x = 2 m
Để đồ thị hàm số có hai điểm cực trị A, B <=> Phương trình y ' = 0 có hai nghiệm phân biệt x 1 , x 2 ⇔ 2 m ≠ 0 ⇔ m ≠ 0 .
Giả sử A 0 ; 3 m 2 và B 2 m ; 3 m 2 − 4 m 3 . Phương trình đường thẳng AB là:
x − 0 2 m − 0 = y − 3 m 2 3 m 2 − 4 m 3 − 3 m 2 ⇔ x = y − 3 m 2 − 2 m 2 ⇔ 2 m 2 x + y − 3 m 2 = 0
Lại có
A B = 2 m − 0 2 + 3 m 2 − 4 m 3 − 3 m 2 2 = 4 m 2 + 16 m 6 = 2 m 1 + 4 m 4
Suy ra
S Δ O A B = 1 2 A B . d O ; A B = 1 2 . 2 m . 1 + 4 m 4 . − 3 m 2 4 m 4 + 1 = 3 m . m 2
(đvdt).
Yêu cầu bài toán ⇔ S Δ O A B = 24 ⇔ 3 m 3 = 24 ⇔ m = 2 ⇔ m = ± 2 (thỏa mãn).
Ta có: đạo hàm y’ = m( 3x2-6x). Để hàm số đã cho có 2 điểm cực trị thì m≠ 0.
Với mọi m≠ 0 , ta có
Gọi tọa độ 2 điểm cực trị là A( 0 ; 3m-3) và B( 2 ; -m-3)
Ta có :
2 A B 2 - ( O A 2 + O B 2 ) = 20 ⇔ 11 m 2 + 6 m - 17 = 0 ⇔ m = 1
hoặc m = - 17 11
Vậy giá trị m cần tìm là:
Chọn C.