Cho tam giác ADE có AD = 9cm, AE = 12cm; BD = EC = 3cm (như hình vẽ bên). Tính diện tích ABC biết diện tích ADE là 15cm^2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a) Xét tam giác ABC và tam giác AED có :
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)
Suy ra tam giác ABC ~ tam giác AED ( c-g-c )
b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)
c) Xét tam giác ADC và tam giác AEB có :
\(\widehat{A}\)chung
\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)
Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )
\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)
Xét tam giác KCE và tam giác KDB có :
\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)
Suy ra tam giác KCE ~ tam giác KDB ( g-g )
Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)
Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)
Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)
Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)
Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)
\(\RightarrowĐPCM\)
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: ΔACE vuông cân tại A
=>góc ACE=45 độ
c: DE=BC=căn 12^2+16^2=20cm