Cho đoạn thẳng \(AB=8cm\). Trên cùng một nửa mặt phẳng bờ AB, lần lượt kẻ các đoạn thẳng AC và BD vuông góc với đoạn thẳng AB tại A,B sao cho \(AC=\frac{1}{2}AB;BD=\frac{1}{2}AC\). Một điểm M di động trên đoạn thẳng AB. Hỏi khi điểm M cách điểm B bao nhiêu cm thì \(MC+MD\)đạt giá trị nhỏ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi MA = x => MB = 8 - x (0 < x < 8)
Khi đó MC2 = AM2 + AC2 = 42 + x2 = 16 + x2
=> \(MC=\sqrt{x^2+16}\)
Tương tự ta được
MD = \(\sqrt{\left(8-x\right)^2+4}\)
Khi đó MC + MD = \(\sqrt{x^2+4^2}+\sqrt{\left(8-x\right)^2+2^2}\)
\(\ge\sqrt{\left(x+8-x\right)^2+\left(4+2\right)^2}=10\)
Dấu "=" xảy ra <=> \(\dfrac{x}{4}=\dfrac{8-x}{2}\Leftrightarrow x=\dfrac{16}{3}\)
Kết quả không đổi với AM = 8 - x ; MB = x
Khi đó Min = 10 với x = 8/3
Vậy Min MD + MC = 10 khi MA = 16/3 cm hoặc MB = 16/3 cm
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
\(\implies\) tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
\(\implies\) AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
\(\implies\) CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
\(\implies\) ED = AC + BD
\(\implies\) CD = AC + BD
b) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
\(\implies\) DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
\(\implies\) 2. OB2 - 2 . BD . BE = 0
\(\implies\) 2. OB2 = 2 . BD . BE
\(\implies\) OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
\(\implies\) AC . BD = ( AB / 2 )2
\(\implies\) AC . BD = AB2 / 4
Bạn tự vẽ hình nha
Câu a
Chứng minh : Kẻ OC cắt BD tại E
Xét ΔCAO và ΔEBO có :
ˆA=^OBE (=1v)
AO=BO (gt)
^COA=^BOE (đối đỉnh)
⇒ΔCAO=ΔEBO (cgv - gn )
⇒OC=OE ( hai cạnh tương ứng )
và AC=BE ( hai cạnh tương ứng )
Xét ΔOCD và ΔOED có :
OC=OE (c/m trên )
^COD=^DOE ( = 1v )
OD chung
⇒ΔOCD=ΔOED (cgv - cgv )
⇒CD=DE (hai cạnh tương ứng )
mà DE = BD + BE
và AC = BE ( c/m trên )
⇒CD=AC+BD
Xét ΔAMC vuông tại A và ΔBMD vuông tại B có
MA=MB(M là trung điểm của AB)
AC=BD(gt)
Do đó: ΔAMC=ΔBMD(hai cạnh góc vuông)
nên \(\widehat{AMC}=\widehat{BMD}\)(hai góc tương ứng)
mà \(\widehat{AMC}+\widehat{BMC}=180^0\)(hai góc kề bù)
nên \(\widehat{BMD}+\widehat{BMC}=180^0\)
\(\Leftrightarrow\widehat{CMD}=180^0\)
hay C,M,D thẳng hàng(đpcm)
Mình cũng đang cần . Ai bt chỉ mình với , link cũng đc nhé. Thank you.
Từ đầu năm tới h chưa gặp dạng nào như này , toàn học đường tròn
https://h.vn/cau-hoi/moi-nguoi-ko-giup-cung-dc-a-bai-nay-hoi-hoi-khocho-doan-thang-ab8cm-tren-cung-mot-nua-mat-phang-bo-ab-lan-luot-ke-cac-doan-thang-ac-va-bd-vuong-goc-voi-doan-thang-ab-tai-ab-sao-cho-acfra.4190207579233
mk vừa giải bên h bạn vào xem thử có đúng không