K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BD=3cm

=>AD=4cm

b: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

=>góc ABG=góc ACG

c: G là trọng tâm

=>AG là đường trung tuyến ứng với cạnh BC

=>A,G,D thẳng hàng

3 tháng 4 2022

25cm

3 tháng 4 2022

LODON

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

a: AC=8cm

Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

hay CB=CD

Xét ΔCBD có 

DK là đường trung tuyến

CA là đường trung tuyến

DK cắt CA tại M

Do đó: M là trọng tâm 

=>AM=AC/2=8/3(cm)

b: Xét ΔCAD có

G là trung điểm của AC

GQ//AD

Do đó: Q là trung điểm của CD

Vì M là trọng tâm của ΔCDB nên B,M,Q thẳng hàng

a) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

BE là đường trung tuyến ứng với cạnh BC(gt)

AD cắt BE tại O(gt)

Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

b) Ta có: D là trung điểm của BC(cmt)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)

hay AD=3(cm)

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh CB(cmt)

O là trọng tâm của ΔABC(cmt)

Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)

hay OD=1(cm)

Vậy: OD=1cm

c) Xét ΔABC có 

O là giao điểm của 3 đường phân giác

O là giao điểm của 3 đường trung tuyến

Do đó: ΔABC đều

20 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )

b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến

=> BH = BC :2 = 10 : 2 =5 cm

Áp dụng định lý pitago vào tam giác vuông ABH

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)

20 tháng 2 2022

giải hộ mik câu c vs d đuy 

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác ứng với cạnh đáy BC

nên AD là đường cao ứng với cạnh BC

Xét ΔABC có 

AD là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

AD cắt BE tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: CH\(\perp\)AB

29 tháng 8 2021

Cảm ơn bạn!

 Nhưng mình biết làm câu a với b rồi bạn làm cho mình câu c với d với

14 tháng 3 2021

undefined

undefined

undefined