Cho tam giác ABC cân tại A có AB = AC = 13 cm ; BC = 10 cm.
Tính cos B .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
(Mik ko có kẻ hình đâu nha)
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
a) Gọi trung điểm của AC là H.
Xét tam giác AOH và COH có:
AH = CH (gt)
OH chung
\(\widehat{AHO}=\widehat{CHO}=90^o\)
\(\Rightarrow\Delta AOH=\Delta COH\) (Hai cạnh góc vuông)
\(\Rightarrow OA=OC\) (Hai cạnh tương ứng)
Hay tam giác OAC cân tại O.
b) Xét tam giác ABO và tam giác AMO có:
AB = AM (gt)
Cạnh AO chung
\(\widehat{BAO}=\widehat{MAO}\) (Do AO là tia phân giác góc A)
\(\Rightarrow\Delta ABO=\Delta AMO\left(c-g-c\right)\Rightarrow OB=OM\)
Hay tam giác OMB cân tại O.
c) Ta có \(AH=\frac{AC}{2}=\frac{3\sqrt{2}}{2}\left(cm\right)\)
Xét tam giác vuông AOH, áp dụng định lý Pi-ta-go ta có:
\(OH^2=AO^2-AH^2=3^2-\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{9}{2}\)
\(\Rightarrow OH=\frac{3\sqrt{2}}{2}=AH\)
Vậy ta giác OAH vuông cân tại H. Suy ra \(\widehat{OAH}=45^o\Rightarrow\widehat{BAC}=2.45^o=90^o\)
Vậy tam giác ABC vuông tại A.
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
Kẻ đg cao AH thì AH cũng là trung tuyến
Do đó \(BH=\dfrac{1}{2}BC=5\left(cm\right)\)
\(\Rightarrow\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{5}{13}\)