Cho tam giác ABC cân tại A có AM là trung tuyến và AM = 6cm; BC=4cm
a) CMR: AM là p/g của góc BAC AM là trug trực của BC
b) Lấy điểm O trên AM sao cho AO = 4cm. Nối BO cắt AC tại E. CMR E là trung trực của AC
c) Nối CO cắt AB tại F. CMR BE = CF
d) Tính BO, CO và góc OBC
* Giúp e vs ạ đc bao nhiu thì đc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM là trung trực của BC
nên A nằm trên trung trực của BC
=>AB=AC
=>ΔABC cân tại A
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
Xet ΔAMB vuông tại M và ΔAMC vuông tại M có
AM chung
MB=MC
=>ΔAMB=ΔAMC
=>AB=AC
=>ΔBAC cân tại A
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường phân giác vừa là đường cao
b: Xét ΔABC có
AM là đường trung tuyến
AO=2/3AM
Do đó: O là trọng tâm của ΔABC
=>BO là đường trung tuyến ứng với cạnh AC
hay E là trung điểm của AC
c: Ta có: O là trọng tâm của ΔABC
mà CO cắt BA tại F
nên F là trung điểm của AB
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{BAE}\) chung
AE=AF
Do đó: ΔABE=ΔACF
Suy ra: BE=CF