cho tam giac ABC co BC>AB>AC,A=61;B=b,C=c trong do b,c la cac so nguyen . Khi do c=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Dùng định lí PYTHAGO đảo.
b) Chứng minh tam giác ADB=tam giác ADE
c) Sử dụng 2 góc đối đỉnh, cặp cạnh bằng nhau từ câu b để chứng minh 2 tam giác bằng nhau.
Chứng minh DF>BD mà BD=DE => DF>DE
d) Sử dụng khéo léo các đoạn thẳng lớn hơn nhau, các đoạn thẳng cọng lại với nhau ra đoạn chính.
Bài không khó, cố làm nhé. Câu cuối mình lười không viết, để bạn khác hd cũng được. Mình khuyến khích tự nghĩ
Gọi I là giao điểm của đoạn thẳng AD và BE
Xét △ ABI và △ AEI có:
AB =AE ( gt )
A1=A2 ( gt )
AI là cạnh chung
⇒ △ ABI = △ AEI ( c.g.c)
⇒ góc AIB = góc AIE ( cạnh tương ứng )
Mà góc AIB + góc AIE = 180 độ ⇒ góc AIE = Góc AIE = 90 độ
⇒AD ⊥ BE
xét tam giác ADB và tam giác ADEcó
AB=AE(GT)
GÓC BAD = GÓC DAE ( AD LÀ TIA PHÂN GIÁC CỦA GÓC ABC )
AD LÀ CẠNH CHUNG
TỪ 4 Ý CÙA NÊU
SUY RA : TAM GIÁC ADB =TAM GIÁC ADE
SUY RA ; GÓC BDA = GÓC ADE
MÀ GÓC BDA + GÓC ADE = 180 ĐỘ ( KỀ BÙ )
SUY RA : GÓC BDA = GÓC ADE = 180 ĐỘ /2 = 90 ĐỘ
VẬY BE VUÔNG GÓC VỚI AD
Bạn tự vẽ hình nhé!
a) Xét \(\Delta\)ABM và \(\Delta\)CNM, ta có:
AM=MC (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
BM=MN (gt)
\(\Rightarrow\) \(\Delta\)ABM = \(\Delta\)CNM (c-g-c)
\(\Rightarrow\) AB=CN (2 cạnh tương ứng)
\(\Rightarrow\)\(\widehat{CAB}\) = \(\widehat{ACN}\) (2 góc tương ứng)
b) Ta có: