Cho đường tròn (O) đường kính BC và một điểm A nằm trên đường tròng(BA<AC;A khác B và C) Qua O kẻ đường thẳng d song song với AC cắt AB tại D
a) chứng minh BAC=90 độ và D là trung điểm của AB
b)tiếp tuyến tại B của đường tròn cắt đường thẳng d tại E. Chứng minh EA cũng là tiếp tuyến của đường tròng (O)
c) Tia CA cắt tia BE tại F chứng minh E là trung điểm của BF
a: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC có
O là trung điểm của BC
OD//AC
Do đó: D là trung điểm của AB
b:
Ta có: ΔOAB cân tại O
mà OD là đường trung tuyến
nên OD\(\perp\)AB
=>OE\(\perp\)AB tại D
ΔOAB cân tại O
mà OE là đường cao(OE\(\perp\)AB tại D
nên OE là phân giác của \(\widehat{AOB}\)
=>\(\widehat{AOE}=\widehat{BOE}\)
Xét ΔOBE và ΔOAE có
OB=OA
\(\widehat{BOE}=\widehat{AOE}\)
OE chung
Do đó: ΔOBE=ΔOAE
=>\(\widehat{OBE}=\widehat{OAE}=90^0\)
=>EA là tiếp tuyến của (O)
c:Ta có: OE\(\perp\)AB
AB\(\perp\)AC
Do đó: OE//AC
Xét ΔFBC có
O là trung điểm của BC
OE//FC
Do đó: E là trung điểm của BF