cho tam giác ABC vuông tại A ; AH vuông góc với BC (H thuộc BC ) D thuộc AH ( D nằm giữa A và H) E thuộc tia đối tia HA sao cho HE =AD đường thẳng vuông góc với AH tại D cắt AC tại F
chứng minh EB vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
AB=AE
=> tam giác ABE vuông cân
=> AG đồng thời là đường phân giác
=> GB/GC=AB/AC (t/c đường phân giác)(1)
tc ΔABC~ ΔHAC(g.g)
=> AB/AC=HA/HC (t/c...)(2)
từ 1 và 2 => GB/GC=HA/HC
GB/(GB+GC)=HA/(HA+HC)(t/c của dãy tỉ số = nhau)
GB/BC=HA/(HA+HC)
mà HA=HD
=>GB/GC=HD(HA+HC) (ĐPCM)