tam giác ABC vuông A,đường cao AH, vẽ (A;AH).kẻ tiếp tuyến BD,CE vs đg tròn
a)C/M BC là tt của (A;AH).
b)C/m BD +CE=BC
c)C/m 3 đ D A C thẳng
d)C/m DE là tt của đg tròn đk BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)
Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)
\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)
\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)
b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Sửa đề: AD là đường phân giác
a) Tính BC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{12}=\dfrac{CD}{16}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{16}=\dfrac{BD+CD}{12+16}=\dfrac{BC}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{12}=\dfrac{5}{7}\\\dfrac{CD}{16}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\left(cm\right)\\CD=\dfrac{80}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{60}{7}cm\); \(CD=\dfrac{80}{7}cm\)
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
Hình vẽ:
Giải
a. Xét ΔHBA và ΔABC có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ΔHBA ∼ ΔABC (g.g)
b. Xét ΔABC vuông tại A có:
\(BC^2=AB^2+AC^2\)(định lí py-ta-go)
\(=5^2+12^2\)
\(=169\)
\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)
Vì ΔABC ∼ ΔHBA (cmt)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)
⇒\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)
⇒\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a.Xét tam giác HBA và tam giác ABC, có:
^AHB = ^CAB = 90 độ
^B: chung
Vậy tam giác HBA đồng dạng tam giác ABC ( g.g )
b.
Áp dụng định lý pitago, ta có:
\(BC=\sqrt{8^2+10^2}=2\sqrt{41}cm\)
Ta có: tam giác HBA đồng dạng tam giác ABC
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
\(\Leftrightarrow\dfrac{AH}{10}=\dfrac{8}{2\sqrt{41}}\)
\(\Leftrightarrow AH=\dfrac{8.10}{2\sqrt{41}}=\dfrac{40\sqrt{41}}{41}cm\)
Ta có: tam giác HBA đồng dạng tam giác ABC
\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB^2=HB.BC\)
\(\Leftrightarrow8^2=2\sqrt{41}HB\)
\(\Leftrightarrow HB=\dfrac{32\sqrt{41}}{41}cm\)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Ta có : AH \(\perp\)BC tại H (gt)
và H thuộc đường tròn (A;AH)
=> BC là tiếp tuyến đường tròn (A;AH)
b) Ta có : BH =BD; CH= CE (Tính chất 2 tiếp tuyến cắt nhau)
=> BD + CE = BH +CH = BC(đpcm)
c) Ta có: \(\widehat{DAB}=\widehat{BAH}\), \(\widehat{HAC}=\widehat{CAE}\)
\(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=180^o\)
=> D,A,E thẳng hàng
d) \(\Delta\)ABC vuông nên tâm O của đường tròn ngoại tiếp thuộc trung điểm của BC
OA là đường trung bình của hình thang
=> AO \(\perp\) DE
=> DE là tiếp tuyến của đường tròn đường kính BC
https://hoc24.vn/cau-hoi/bai-2-cho-tam-giac-abc-nhon-ab-ac-noi-tiep-duong-tron-0-duong-cao-ad-d-ebc-ve-duong-kinh-akcua-dung-tron-o-chung-minh-1-abck-bdak-2-ab-ck-acbk-bcak.333478443083
bạn ơi giúp mình vs