K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

À bài này thì tau chưa biết

22 tháng 5 2017

Nr bt cx ns, hơn ko.Ns mần chi ni nà. Rảnh hè.

a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)

nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)

Xét ΔADC vuông tại A và ΔAEB vuông tại A có 

AC=AB(ΔABC vuông cân tại A)

\(\widehat{ACD}=\widehat{ABE}\)(cmt)

Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)

Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC vuông cân tại A)

nên \(\widehat{ABE}=\widehat{ACD}\)

Xét ΔABE vuông tại A và ΔACD vuông tại A có 

AB=AC(ΔABC vuông cân tại A)

\(\widehat{ABE}=\widehat{ACD}\)(cmt)

Do đó: ΔABE=ΔACD(cạnh góc vuông-góc nhọn kề)

Suy ra: BE=CD(Hai cạnh tương ứng) và AE=AD(Hai cạnh tương ứng)

Xét ΔABC có 

BE,CD là các đường phân giác

BE cắt CD tại I

Do đó: I là tâm đường tròn nội tiếp

=>AI là phân giác của góc BAC

=>góc MAB=góc MAC=45 độ

Xét ΔMAB có góc MAB=góc B=45 độ

nên ΔMAB vuông cân tạiM

Xét ΔMAC có góc MAC=góc C=45 độ

nên ΔMAC vuông cân tại M

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

12 tháng 12 2023

a: ta có: CE là phân giác của góc ACB

=>\(\widehat{ACE}=\widehat{ECB}=\dfrac{\widehat{ACB}}{2}\left(1\right)\)

Ta có: BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\cdot\widehat{ABC}\left(2\right)\)

Ta có: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)

Xét ΔECB và ΔDBC có

\(\widehat{EBC}=\widehat{DCB}\)

 BC chung

\(\widehat{ECB}=\widehat{DBC}\)

Do đó: ΔECB=ΔDBC

=>BE=CD

b: Xét ΔFBC có \(\widehat{FBC}=\widehat{FCB}\)

nên ΔFBC cân tại F

=>FB=FC

Ta có: ΔECB=ΔDBC

=>EC=DB

Ta có: EF+FC=EC

BF+FD=BD

mà EC=BD và BF=FC

nên EF=FD

c: ta có: AB=AC

=>A nằm trên đường trung trực của BC(4)

Ta có: FB=FC

=>F nằm trên đường trung trực của BC(5)

Từ (4) và (5) suy ra AF là đường trung trực của BC

=>AF\(\perp\)BC

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih