Cho hình chữ nhật ABCD (AD<AB). Vẻ AH \(\perp\) BD tại H.
a) CM: \(\Delta\)HAD đồng dạng \(\Delta\)ABD
b) AB=20;AD=15. Tính BD, AH?
c) CM: AH2=HD.HB
d) Trên tia đối của tia DA lấy điểm E sao cho DE<AD. Vẽ EM\(\perp\)BD tại M. EM cắt AB tại O. Vẽ AK\(\perp\)BE tại K. Vẽ AF\(\perp\)OD tại F.
CM: H, F, K thẳng hàng
Bạn tự vẽ hình nha!
a, Xét \(\Delta HAD\) và \(\Delta ABD\) có:
Góc AHD = Góc DAB ( = 90 độ)
Góc ADB chung
=> \(\Delta HAD\) đông dạng\(\Delta ABD\) (g-g)
b, Xét \(\Delta ABD\) vuông tại A có :
\(BD^2=AB^2+AD^2=20^2+15^2=625\)
\(\Rightarrow BD=\sqrt{625}=25\)
Ta có: \(\Delta HAD\) đồng dạng \(\Delta ABD\) (theo câu a)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\Rightarrow AH=12\)
c, Xét \(\Delta HDA\) và \(\Delta HAB\) có:
\(\widehat{AHD}=\widehat{AHB}=90^0\)
\(\widehat{ADH}=\widehat{BAH}\) (cùng phụ với góc DAH )
\(\Rightarrow\Delta HDA\) đồng dạng \(\Delta HAB\) (g - g)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HD}{AH}\Rightarrow AH^2=HB.HD\)