Cho tứ giác ABCD. \(AB\cap CD=E;AD\cap BC=F\); H, I, J, K theo thứ tự là trực tâm các tam giác EBC, FDC, EDA, FBA. Chứng minh rằng mỗi một trong 4 điểm H, I, J, K có cùng phương tích đối với các đường tròn đường kính AC, BD, EF. Từ đó suy ra H, I, J, K thẳng hàng. (đường thẳng Steiner)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
A B C D E F
a/ Xét \(\diamond EBFD\), có :
- \(EB//DF\) (vì \(AB//CD\))
- \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)
\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)
b/ Xét \(\diamond AECF\), có :
- \(AE//FC\) (vì \(AB//CD\))
- \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)
\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)
Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì
Þ H E F ^ = 90 0 ⇒ H E ⊥ E F
Þ AC ^BD.