K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

A B C H K I

   GT      

Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC,

AB tại H và K. Hai đường này cắt nhau tại I.

KLCMR : AI là tia phân giác góc A.

Có : \(\Delta\)ABC cân tại A.

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)

Xét \(\Delta\)BHC và \(\Delta\)CKB có :

\(\widehat{BHC}=\widehat{CKB}=90^0\)

\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)

Mà : \(\widehat{KBC}=\widehat{HCB}\)

 \(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)            

  +)  \(\Leftrightarrow\Delta\)IBC cân tại I                     +) Từ (1)

       \(\Leftrightarrow IB=IC\)(2)                       \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)

Lại có do \(\Delta\)ABC cân tại A 

\(\Leftrightarrow AB=AC\) (4)

Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)

\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )


 

29 tháng 12 2015

ghi đề không chấm phấy đọc dễ sai cậu sửa lại rồi mình giải cho, có hình nữa Mình hứa

29 tháng 8 2018

A B C D E

Dễ dàng CM được tam giác EBD vuông tại D và có đường cao BA

Ta có góc E1 = góc B1=góc B2=1/2 goc B

Theo công thức tg2a=2tga/(1-tg^2a) ta có

tgB=2tgE1/(1-tg^2E1) <=> 4/3 = 2.\(\frac{6}{EA}\)\(\frac{1}{1-\frac{36}{EA^2}}\)=\(\frac{12}{EA}\).\(\frac{EA^2}{EA^2-36}\)=\(\frac{12EA^2}{EA^2-36}\)

Giải PT ta có EA= 12 \(6\sqrt{5}\) 

29 tháng 8 2018

EA=12, ta tính được EB=\(6\sqrt{5}\)

Làm tương tự tính BD