K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

26 tháng 1 2022

a) AM là trung tuyến (gt). => M là trung điểm của BC.

=> BM = MC =  \(\dfrac{1}{2}\) BC.

Xét tứ giác AMBN:

I là trung điểm của AB (gt).

I là trung điểm của NM (N là điểm đối xứng với M qua I).

=> Tứ giác AMBN là hình bình hành (dhnb). 

=> AN = BM và AN // BM (Tính chất hình bình hành).

Mà BM = MC (cmt).

=> AN = MC.

Xét tứ giác ANMC:

AN = MC (cmt).

AN // MC (AN // BM).

=> Tứ giác ANMC là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: 

AM là trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).

=> AM = BM = MC = \(\dfrac{1}{2}\) BC.

Xét hình bình hành AMBN: AM = BM (cmt).

=> Tứ giác AMBN là hình thoi (dhnb).

c) Tứ giác ANMC là hình bình hành (cmt).

=> NM = AC (Tính chất hình bình hành).

Mà AC = 6 cm (gt).

=> NM = AC = 6 cm.

\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)

d) Tứ giác AMBN là hình vuông (gt).

=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).

=> \(AM\perp BC.\)

Xét tam giác ABC vuông tại A:

AM là trung tuyến (gt).

AM là đường cao \(\left(AM\perp BC\right).\)

=> Tam giác vuông ABC vuông cân tại A.

13 tháng 12 2016

a,Xet tam giac ABC co : 

BI=IA va BM=MC

=>IM la dtb => IM//AC va IM=1/2 AC

Ma IM=IN=>MN=AC

+Xet tu giac ANMC co : 

MN=AC

Va IM//AC=>MN//AC

=> ANMC la HBH

+Xet tu giac AMBN co : 

I la trung diem BA (BI=AI)

I la trung diem MN (MI=NI)

=>AMNB la HBH

Ma MI//AC hay AB vuong goc voi AC

=>MI vuong goc voi AB

Vay hinh binh hanh AMNB la hinh thoi ( hbh co 2 duong cheo cat nhau va bang 90 la hinh thoi)

b, Canh IM dai la :

IM=1/2AC=>IM=1/2.6=>IM=3

Canh MN dai la : 

MN=2IM=>MN=2.3=6

Dien h cua tu giac AMBN la :

\(\frac{1}{2}.d_1.d_2=\frac{1}{2}.4.6=12cm^2\)

Vay dien h cua tu giac AMBN la 12cm2

c, Tam giác vuông ABC cần điều kiện gi để AMBN là hình vuông la :

Ta có : AMBN la hinh thoi => hinh thoi AMBN can co 1 goc vuong

Thi đường trung tuyến AM can vuong goc voi BC

Hay AM la duong cao cua tam giac ABC

=> Hinh thoi AMBN co 1 goc vuong vuong M=90

=> AMBN la hinh vuong

Vậy tam giác vuông ABC cân là tam giác vuông cân để AMBN là hình vuông.

nho k nha

12 tháng 12 2016

kick đúng tui xong tui làm cko( Việt Nam nói là làm)

24 tháng 11 2021

QDSHYFT

a: Xét tứ giác AMBN có

I là trung điểm chung của AB và MN

góc AMB=90 độ

Do đó: AMBN là hình chữ nhật

b: Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

ukm

bài này em làm đc những ý nào rôi

để ah hướng dẫn những ý còn lại

19 tháng 10 2021

a: Xét ΔBAC có 

M là trung điểm của BC

D là trung điểm của AB

Do đó: MD là đường trung bình của ΔBAC

Suy ra: MD//AC

hay ME\(\perp\)AB

mà ME cắt AB tại trung điểm của ME

nên E và M đối xứng nhau qua AB

b: Xét tứ giác AEMC có 

AC//ME

AC=ME

Do đó: AEMC là hình bình hành

31 tháng 8 2019

Giải bài 89 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có MB = MC, DB = DA

⇒ MD là đường trung bình của ΔABC

⇒ MD // AC

Mà AC ⊥ AB

⇒ MD ⊥ AB.

Mà D là trung điểm ME

⇒ AB là đường trung trực của ME

⇒ E đối xứng với M qua AB.

b) + MD là đường trung bình của ΔABC

⇒ AC = 2MD.

E đối xứng với M qua D

⇒ D là trung điểm EM

⇒ EM = 2.MD

⇒ AC = EM.

Lại có AC // EM

⇒ Tứ giác AEMC là hình bình hành.

+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.

Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.

c) Ta có: BC = 4cm ⇒ BM = 2cm

Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm

d)- Cách 1:

Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC

Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.

- Cách 2:

Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM

⇔ ΔABC có trung tuyến AM là đường cao

⇔ ΔABC cân tại A.

Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.

27 tháng 8

tại sao AC //EM vậy ạ ?

29 tháng 12 2018

a)tứ giác AMBN có

I là trung điểm AB (gt)

I là trung điểm NM (N đx M qua I)

=> AMBN là HBH (vì là tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

có I là trung điểm AB (gt)

M là TĐiểm BC (AM là đường trung tuyến)

=> IM là đường trung bình tgiasc ABC (đnghĩa)

=> IM // AC IM = AC /2 (t/c đường trung bình)

IM // AC => IM vuộng AB (AC vuông AB )

hay NM vuông AB

HBH ABCD có 2 đường chéo vuông vs nhau=> ABCD là Hthoi (...)

b) có IM = AC/2 (cmcaau a).

=> IM = 6/2=3 (cm)

có I là Tđiểm NM (N đx M qua I)

=> NM = IM .2=6 (cm)

S hthoi AMBN = 1/2.6.4=12 (cm2 )

c) tam giác vuông ABC cần đk cân tại A để AMBN là Hvuông