Cho ∆ABC cân tại B,phân giác của A cắt BC tại M, phân giác của góc C cắt AB tại N.a)CM:∆ABM đồng dạng với ∆CBN.b)CM:MN //AC.c)Cho AB=10cm;AC=6cm.Tính độ dài đoạn MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác ABC là tam giác cân nên góc BAC=góc BCA (1)
Mà AM là tia phân giác của góc BAC=> góc BAM=Góc MAC (2)
CN là tia phân giác của góc BCA nên góc BCN= góc NCA (3)
Từ (1) (2)(3) suy ra góc BAM=góc BNC
Xét 2 tam giác ABM và tam giác CBN, ta có:
Góc B chung
BAM=BCN (cmt)
=>tam giác ABM đồng dạng với tam giác CBN(g.g)
b, Vì tam giác ABM đồng dạng với tam giác CBN (theo câu a) nên ta có tỉ lệ sau:
BM/BN=BC/BA=>NM//AC( định lý Ta-lét) (đcpcm)
a) Xét \(\Delta ABM\)và \(\Delta CBN\)có :
\(\widehat{B}\)là góc chung
\(\frac{AB}{BC}=\frac{NB}{MB}\)( Do tam giác ABC cân tại B , \(AB=BC\) và \(\widehat{A}=\widehat{C}\))
\(\Rightarrow\Delta ABM\)\(\infty\)\(\Delta CBN\)\(\left(c.g.c\right)\)
b) do \(\Delta ABM\infty\Delta BCN\left(c.g.c\right)\)(chứng minh câu a)
ta có tỉ lệ : \(\frac{BM}{BC}=\frac{BN}{AB}\)=MN/AC(dpcm)
c) bạn tự làm nka câu này dễ
a: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
a, Xét hai tam giác ABM và CBM có:
\(\widehat{B}\) là góc chung
\(\dfrac{AB}{BC}=\dfrac{NB}{MB}\) ( Do tam giác ABC cân tại B)
=> tam giác ABM đồng dạng tam giác CBM (c.g.c)
b, Do tam giác ABM∼ tam giác CBN nên ta có tỉ lệ:
\(\dfrac{BM}{BC}=\dfrac{BN}{AB}\) => MN // AC (đpcm)
1: BC=10cm
Xét ΔABC có BD là đường phân giác
nên AD/AB=DC/BC
=>AD/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3(cm); BD=5(cm)
2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{IAB}=\widehat{DCB}\)
Do đó: ΔABI\(\sim\)ΔCBD
a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M