K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

17 tháng 9 2021

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

a: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*CB

=>AB^2/AC^2=BH/CH

b:

góc B=90-60=30 độ

góc HAB=90-30=60 độ

BC=căn 8^2+12^2=4*căn 13(cm)

HB=AB^2/BC=36/căn 13(cm)

AH=8*12/4*căn 13=24/căn 13(cm)

 

14 tháng 12 2021

Áp dụng HTL: \(AB^2=BH.BC;AC^2=CH.BC\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

26 tháng 10 2021

a) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b) Áp dụng HTL trong tam giác ABH vuông tại H và tam giác AHC vuông tại H:

\(\left\{{}\begin{matrix}AM.AB=AH^2\\AN.AC=AH^2\end{matrix}\right.\)\(\Rightarrowđpcm\)

26 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

ΔACB vuông tại A

mà AH là đường cao

nên AH^2=HB*HC

28 tháng 10 2023

Bài 1:

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét ΔHAB vuông tại H có HG là đường cao

nên \(AG\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AG\cdot AB=AK\cdot AC\)

28 tháng 10 2023

còn 1 bài nữa bạn ơi giải giúp mình nhé cảm ơn.

22 tháng 2 2022

a, Xét tam giác HAC và tam giác ABC 

^C _ chung 

^AHC = ^BAC = 900

Vậy tam giác HAC ~ tam giác ABC (g.g) 

=> HC/AC=AC/BC ( cạnh tương ứng tỉ lệ ) 

=> AC^2 = HC . BC 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Ta có AC^2 = HC . BC (cmt) 

Thay vào ta được \(16^2=HC.20\Rightarrow HC=\dfrac{16^2}{20}=\dfrac{64}{5}cm\)

22 tháng 2 2022

a. xét tam giác vuông HAC và tam giác vuông ABC, có:

góc C: chung

Vậy tam giác vuông HAC đồng dạng tam giác vuông ABC

b. Áp dụng định lí pitago vào tam giác vuông ABC

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

ta có: tam giác HAC đồng dạng tam giác ABC

\(\Rightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)

\(\Leftrightarrow HC.BC=AC^2\)

\(\Leftrightarrow20HC=16^2\)

\(\Leftrightarrow20HC=256\)

\(\Leftrightarrow HC=\dfrac{64}{5}cm\)

 

a: Sửa đề: ΔABH đồng dạng với ΔCBA

Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét tứ giác ABCD có

AB//CD

AB=CD

=>ABCD là hbh

=>AD//BC

=>AD vuông góc AH

ΔADH vuông tại A có AF là đường cao

nên HF*HD=HA^2=HB*HC