K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì SA vuông góc (ABCD)

=>SA vuông góc CD

Gọi I là trung điểm của AD

=>AI=BC=a

mà AI//BC

nên AB=CI=a

=>AB=CI=ID

=>ΔACD vuông tại C

=>CD vuông góc AC

=>CD vuông góc (SAC)

=>(SCD) vuông góc (SAC)

Vẽ AE vuông góc SC tạiE

=>AE vuông góc (SCD)

mà \(A\in\left(P\right)\perp\left(SCD\right)\)

nên \(AE\in\left(P\right)\)

=>\(E=SC\cap\left(P\right)\)

\(E\in\left(P\right)\cap\left(SCI\right)\)

\(\left(P\right)\supset AB\)//CI thuộc (SCI)

=>(P) cắt (SCI)=Ex//AB//CI

Gọi F=Ex giao SI

=>(P) cắt (SAD) tại AJ

Gọi F=AJ giao SD

=>F=(P)giao (SD)

=>Tứ giác cần tìm là ABEF

3 tháng 7 2017

Đáp án B

Gọi H 1  là chân đường cao kẻ từ H đến DC. H 2  là chân đường cao kẻ từ H đến S H 1 . Khi đó ta có

H H 1 = a 2 , S H = a 3 ⇒ 1 H H 2 = 1 H H 1 2 + 1 S H 2 = 1 3 a 2 + 1 2 a 2 = 5 6 a ⇒ H H 2 = 6 5 a

⇒ d A , S C D = 30 10 a

Chọn phương án B.

NV
3 tháng 4 2021

Bài này đặt ở khu vực lớp 12 mình còn giải (vì có thể sử dụng tọa độ hóa cực lẹ)

Còn lớp 11 thì dựng hình được, nhưng việc tính toán số liệu sau đó đúng là thảm họa.

3 tháng 4 2021

undefined

19 tháng 6 2021

Ta có: \(S_{ABCD}=\dfrac{\left(BC+AD\right).AB}{2}=\dfrac{3}{2}a^2\)

a, \(h=SA=AB.tan60^o=a\sqrt{3}\)

\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.a\sqrt{3}=\dfrac{\sqrt{3}}{2}a^3\)

b, \(h=SA=AD.tan45^o=2a\)

\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.2a=a^3\)

c, Dễ chứng minh được SC vuông góc với CD tại C \(\Rightarrow\widehat{SCA}=30^o\)

\(\Rightarrow h=SA=AC.tan30^o=AD.sin45^o.tan30^o=\dfrac{\sqrt{6}}{3}a\)

\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{6}}{6}a^3\)

12 tháng 5 2021

undefined