Trong hình thang cân ABCD với AD=BC=5;AB=4 và DC=10.Điểm C trên đoạn DF và điểm B là trung điểm của cạnh huyền DE trong tam giác vuông DEF.Thế thì CF bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(AE,BF\bot CD\)
Vì \(AE\parallel BF(\bot CD),AB\parallel EF\) (ABCD là hình thang cân)
\(\Rightarrow ABFE\) là hình bình hành có \(\angle AEF=90\Rightarrow ABFE\) là hình chữ nhật
\(\Rightarrow AB=FE\)
Dễ dàng chứng minh được \(DE=CF\left(\Delta ADE=\Delta BFC\right)\)
\(\Rightarrow DE=\dfrac{CD-AB}{2}=\dfrac{7-3}{2}=2\)
\(\Rightarrow AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-2^2}=\sqrt{21}\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AE=\dfrac{1}{2}\left(7+3\right).\sqrt{21}=5\sqrt{21}\)
kẻ AH vuông góc với DC; BK vuông góc với DC
Ta có ABKH là hình chữ nhật có HK =5 cm
ta có DH=KC=(13-5)/2=4cm
Ta có \(AH^2=DH\cdot HC=4\cdot9=36\)
suy ra AH=6cm
rồi tính DIỆN TÍCH ABCD=\(\frac{\left(AB+DC\right)\cdot AH}{2}=\frac{\left(13+5\right)\cdot6}{2}=\)bao nhiêu tính ra nhé
Kẻ \(AH\perp DC\) , \(BK\perp DC\)
Xét tứ giác ABKH có: AB // HK (gt)
AH // BK ( cùng \(\perp DC\))
=> ABKH là hình chữ nhật (dhnb)
=> HK = AB = 4, AH = BK
Xét △ ADH vuông tại H và △BCK vuông tại K
Có: AH = BK (cmt)
AD = BC (ABCD là hình thang cân)
=> △ADH = △BCK (ch-cgv)
=> DH = KC
Ta có: DH + HK + KC = DC
=> 2DH + HK = 10
=> 2DH + 4 = 10
=> 2DH = 6
=> DH = 3 = CK
Ta có: DK = DH + HK = 3 + 4 = 7
Xét △DEF vuông tại F có: BF là đường trung tuyến
=> BF = BD = DE/2
=> △BFD cân tại B
mà BK là đường cao ( \(BK\perp DF\))
=> BK là đường trung tuyến
=> DK = KF = 7
Ta có: CF = KF - KC = 7 - 3 = 4