3 Tìm gtln của các biểu thức sau;
A-/2x-\(\frac{3}{4}\)\ -6
B-/\(\frac{5}{3}\)-2x\
C 9 - /2X-6\
D 15,7 -/3X-9\
E = - /2x -4\ - /3y -9\
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
a, \(-\dfrac{2}{3}+\left|\dfrac{1}{2}x-3\right|\ge-\dfrac{2}{3}\)
Dấu ''='' xảy ra khi x = 6
Vậy GTNN biểu thức trên là -2/3 khi x = 6
b, \(1,6-\left|2x-1\right|\le1,6\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN biểu thức trên là 1,6 khi x = 1/2
a) Ta có: \(\left|\dfrac{1}{2}x-3\right|\ge0\forall x\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-3\right|-\dfrac{2}{3}\ge-\dfrac{2}{3}\forall x\)
Dấu '=' xảy ra khi x=6
b) Ta có: \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow-\left|2x-1\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-1\right|+1.6\le1.6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Câu E bạn xem lại đề nha
F=\(-y^2+2y-6\)
\(=-\left(y^2-2y+6\right)\)
\(=-\left(y-1\right)^2-5\)
Vì \(-\left(y-1\right)^2\le0\forall y\)
\(\Rightarrow F\le-5\forall y\)
\(MaxF=-5\Leftrightarrow y=1\)
\(F=-y^2+2y-6=-\left(y^2-2y+1\right)-5=-\left(y-1\right)^2-5\le-5\forall y\in R\\ Vậy:max_F=-5\Leftrightarrow y=1\)
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
GTNN=1 khi x=\(\sqrt{3}\)
GTLN=+\(\infty\) khi x=+\(\infty\)
(+\(\infty\): Nghĩa là số rất lớn không thể xác định đọc là dương vô cùng (kí hiệu+\(\infty\)) vì (x-\(\sqrt{3}\))^2 luôn lớn hơn 0 mà chưa có giới hạn về giá trị của x nên không thể xác định GTLN)
2A = 2x (12 - 2x)
Áp dụng bất đẳng thức cosi
2x (12 - 2x) ≤ \(\dfrac{\left(2x+12-2x\right)^2}{4}\)
⇔ 2A ≤ 36
⇔ A ≤ 18
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}0\le x\le6\\2x=12-2x\end{matrix}\right.\)⇔ x = 3
Vậy Amax = 18 khi x = 3
a)C=-|5/3-x|
Ta có: |5/3-x|>=0(với mọi x)
=>-|5/3-x|<=0 hay C<=0
Nên GTLN của C là 0 khi:
5/3-x=0
x=5/3-0
x=5/3
Vậy GTLN của C là 0 khi x=5/3
b)D=9-|x-1/10|
Ta có: |x-1/10|>=0(với mọi x)
=>-|x-1/10|<=0
=>9-|x-1/10|<=9 hay D<=9
Nên GTLN của D là 9 khi:
x-1/10=0
x=0+1/10
x=1/10
Vậy GTLN của D là 9 khi x=1/10
\(\left|2x-3\right|\ge0\)
\(\Rightarrow2017-\left|x-3\right|\le2017\)
Vậy giá trị lớn nhất của P là 2017 khi |2x - 3| = 0 <=> x = 3/2
ABCD dễ (tự làm)
E = ... <= 0 + 0 = 0