Bài tập :
Cho mặt phẳng Oxy cho 3 điểm A(1;1) , B(3;2), C(-1;6)
a) Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng denta: 3x +4y -17 = 0
b) Viết phương trình đường thẳng d qua A và cách đều hai điểm B và C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Thay \(x=3;y=4\Rightarrow\dfrac{4}{3}\cdot3=4\) (đúng)
Vậy \(A\left(3;4\right)\in y=\dfrac{4}{3}x\)
38.
Gọi I là trung điểm AB và G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)
\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow MI=MG\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG
a/ \(R=d\left(A;\Delta\right)=\frac{\left|3.1+4.1-17\right|}{\sqrt{3^2+4^2}}=2\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-1\right)^2=4\)
b/Có 2 trường hợp xảy ra: d đi qua trung điểm của BC và d song song BC
TH1: Gọi \(M\left(1;4\right)\) là trung điểm BC \(\Rightarrow\overrightarrow{AM}=\left(0;3\right)\Rightarrow\) đường thẳng d nhận \(\overrightarrow{n_d}=\left(1;0\right)\) là một vtpt
Phương trình d: \(1\left(x-1\right)+0\left(y-1\right)=0\Leftrightarrow x-1=0\)
TH2: \(\overrightarrow{BC}=\left(-4;4\right)\Rightarrow\) đường thẳng d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt
Phương trình d: \(1\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow x+y-2=0\)