K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=8(cm)

b: Xét ΔBOM và ΔAOM có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔBOM=ΔAOM

Suy ra: \(\widehat{OBM}=\widehat{OAM}=90^0\)

hay MA là tiếp tuyến của (O)

Bạn tự vẽ hình nha!

c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.

Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)

Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.

 
16 tháng 1 2023

loading...  

12 tháng 12 2023

a: Xét (O) có

KM,KA là các tiếp tuyến

Do đó: KM=KA(1)

Xét (O') có

KA,KN là các tiếp tuyến

Do đó: KA=KN(2)

Từ (1) và (2) suy ra KM=KN

mà M,K,N thẳng hàng

nên K là trung điểm của MN

Xét ΔAMN có

AK là đường trung tuyến

\(AK=\dfrac{MN}{2}\left(=MK\right)\)

Do đó: ΔAMN vuông tại A

 

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. $G=\left\{1;2;3;4;5;6\right\}$
Các tập hợp còn lại bạn chưa đưa ra điều kiện để tìm.

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. $G=\left\{1;2;3;4;5;6\right\}$
Các tập hợp còn lại bạn chưa đưa ra điều kiện để tìm.

28 tháng 2 2020

ABCDMNO

Xét △ADC có :MO // DC  

\(\Rightarrow\frac{MO}{DC}=\frac{AO}{AC}\)(Hệ quả định lí Thales)   (1)

Xét △BDC có : ON // DC

\(\Rightarrow\frac{NO}{DC}=\frac{BO}{BD}\)(Hệ quả định lí Thales)    (2)

Xét △ODC có AB // DC

\(\Rightarrow\frac{AO}{AC}=\frac{BO}{BD}\)(Theo hệ quả định lí Thales)   (3)

Từ (1) ; (2) và (3) :

\(\Rightarrow\frac{OM}{CD}=\frac{ON}{CD}\)

\(\Rightarrow OM=ON\left(ĐPCM\right)\)