K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 2:

a: \(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2014}}\)

=>\(5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{2013}}\)

=>\(5A-A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{2013}}-\dfrac{1}{5}-\dfrac{1}{5^2}-...-\dfrac{1}{5^{2024}}\)

=>\(4A=1-\dfrac{1}{5^{2024}}\)

=>\(A=\dfrac{1}{4}-\dfrac{1}{4\cdot5^{2024}}< \dfrac{1}{4}\)

 

24 tháng 10 2023

ko bt lm

 

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

bài 1 cho S= 3^0 + 3^2 + 3^4 + 3^6 +...+ 3^2002 a. Chứng tỏ rằng giá trị của biểu thức S chia hết cho 7. b. So sánh S và 3^2003 + 1/2 bài 2: tìm x (x - 5 )^2023 = ( x - 5 )^2021 bài 3: Trong đợt ủng hộ học sinh các trường gặp khó khăn ở vùng cao. Trường THCS Võ Thị sáu đã quyên góp được 144 cặp sách , 252 quyển vở và 360 hộp bút. Được chia thành các thùng quà mà trong đó số cặp sách , số quyển vở và số...
Đọc tiếp
bài 1 cho S= 3^0 + 3^2 + 3^4 + 3^6 +...+ 3^2002 a. Chứng tỏ rằng giá trị của biểu thức S chia hết cho 7. b. So sánh S và 3^2003 + 1/2 bài 2: tìm x (x - 5 )^2023 = ( x - 5 )^2021 bài 3: Trong đợt ủng hộ học sinh các trường gặp khó khăn ở vùng cao. Trường THCS Võ Thị sáu đã quyên góp được 144 cặp sách , 252 quyển vở và 360 hộp bút. Được chia thành các thùng quà mà trong đó số cặp sách , số quyển vở và số hộp bút trong mỗi thùng quà là như nhau Hỏi: a) Có bao nhiêu chia thùng (số thùng lớn hơn 3) b) Cách chia nào mà số cặp sách , số quyển vở , số hộp bút trong mỗi thùng là ít nhất . Khi đó số cặp sách , số vở và số hộp bút trong mỗi thùng quà là bao nhiêu? bài 4: Tìm tất các số tự nhiên n thỏa mãn (5n + 29) : (n + 2) ( : là chia hết ) giúp mik mấy bài này vớiiii mik
1
23 tháng 10 2023

Đay là của lp 6 ư, nhìn ko hỉu j cả

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$S=3^0+3^2+3^4+...+3^{2014}$

$3^2S=3^2+3^4+3^6+...+3^{2016}$

$\Rightarrow 3^2S-S=3^{2016}-3^0$

$\Rightarrow 8S=3^{2016}-1$

$\Rightarrow S=\frac{3^{2016}-1}{8}$

b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$

$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$

$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$

$=7.13(1+3^6+...+3^{2010})\vdots 7$.