K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

+ Đạo hàm  f'(x) =  - m + 1 ( x - 1 ) 2

TH1. Với m> -1 suy ra  f’(x) <0 mọi x≠ 1 nên hàm số f(x)  nghịch biến trên mỗi khoảng xác định.

Khi đó m i n [ 2 ; 4 ]   y   =   f ( 4 )   =   m + 4 3   =   3   ↔   m   =   5 (chọn).

TH2. Với m< -1 suy ra  f”(x) > 0 mọi x≠1 nên hàm số f( x)  đồng biến trên mỗi khoảng xác định.

Khi đó  m i n [ 2 ; 4 ]   y   =   f ( 2 )     =   m + 2   =   3   ↔ m = 1 (loại).

Chọn C.

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

14 tháng 11 2019

+ Đạo hàm f'(x) = 1   -   m ( x + 1 ) 2 .

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

m i n   y [ 1 ; 2 ]   +   m a x [ 1 ; 2 ]   y   =   f ( 1 )   + f ( 2 )   =   m + 1 2 +   m + 2 3   =   16 3 ↔ 5 m 6   =   25 6 ↔   m   =   5

Chọn D.

14 tháng 9 2023

\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)

Chọn a

27 tháng 10 2018

2 tháng 11 2018

21 tháng 3 2018

16 tháng 10 2018

NV
21 tháng 1 2021

\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)

- Với \(m=-1\) thỏa mãn

- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)

\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)

\(\Rightarrow-1< m\le0\Rightarrow m=0\)

- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)

\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)

\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)

Vậy \(m=\left\{-2;-1;0\right\}\)

19 tháng 7 2017

Đáp án đúng : A