K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

10 tháng 5 2022

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)

b) Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}}  = \left( {1; - 4} \right)\).

Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).

c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là

\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)

Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)

a: vecto AB=(7;1)

=>(d) có VTPT là (7;1)

Phương trình (d) là;

7(x-6)+1(y+2)=0

=>7x+y-40=0

b: Tọa độ K là:

x=(6-2)/2=2 và y=(4-2)/2=1

B(5;5); K(2;1)

vecto BK=(-3;-4)=(3;4)

=>VTPT là (-4;3)

Phương trình BK là:

-4(x-2)+3(y-1)=0

=>-4x+8+3y-3=0

=>-4x+3y+5=0

c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)

Phương trình (C) là:

(x-5)^2+(y-5)^2=10^2=100

Bài 2:

a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)

Phương trình (C) là:

(x+2)^2+(y-1)^2=2^2=4

Bài 1:

a: I thuộc Δ nên I(x;-2x-3)

IA=IB

=>IA^2=IB^2

=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)

=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49

=>26x+41=32x+53

=>-6x=-12

=>x=2

=>I(2;-7): R=IA=căn 113

Phương trình (C) là:

(x-2)^2+(y+7)^2=113

2: vecto IA=(7;-8)

Phương trình tiếp tuyến là:

7(x+5)+(-8)(y-1)=0

=>7x+35-8y+8=0

=>7x-8y+43=0

 

13 tháng 5 2022

\(I\left(3;-1\right)\) là tâm đường tròn (C)

Ta có \(\overrightarrow{IA}=\left(-2;4\right)=2\left(-1;2\right)\) là VTPT của tiếp tuyến

\(\Rightarrow\) PT tiếp tuyến tại A: \(-1\left(x-1\right)+2\left(y-3\right)=0\Rightarrow-x+2y-5=0\)

Câu 4:

Tọa độtâm I là;

x=(4+2)/2=3 và y=(-3+1)/2=-1

I(3;-1); A(4;-3)

IA=căn (4-3)^2+(-3+1)^2=căn 5

=>(C): (x-3)^2+(y+1)^2=5

Câu 3:

vecto AB=(2;3)

PTTS là:

x=1+2t và y=-2+3t

NV
14 tháng 5 2021

a. 

\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp

Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)

Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)

c.

\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)

\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)

22 tháng 3 2016

a) 

Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

với tâm I(a;b) bán kính R

\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)

\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)

Do (C) tiếp xúc với Ox , Oy

\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)

Lại có : (C) đi qua điểm có tọa độ (2;1) 

\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)

TH1: a = b thay vào (1) ta được : 

\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)

với a =1 \(\Rightarrow\) b =1

\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)

với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)

TH2 : a = -b thay vào (1) ta được :

\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)

Vậy có 2 đường tròn (C) cần tìm ở trên

b)

Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R

Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :

\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\) 

\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)

Lại có : (C) tiếp xúc với Ox 

\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\) 

Thay \(b=R=\frac{5}{2}\) vào (1)ta được :

\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)

với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)

với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)

 

 

 

 

20 tháng 5 2020

vì sao ở chỗ (1) lại không có \(b^2\)

19 tháng 3 2016

kksjknkjkjdcrfbucminh