Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt trục x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C sao cho OA=2OB=3OC>0.
A. 4
B. 6
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: (Oxy): z = 0, (Oyz): x = 0, (Oxz): y = 0
Trục Oy: x = 0 y = t z = 0
Cách giải: M (1;0;3) ∈ (Oxz)
Đáp án C
Cách giải:
Gọi tọa độ các giao điểm
Khi đó phương trình mặt phẳng (P) có dạng đoạn chắn
Vì OA=2OB=3OC>0 nên
TH1: a=2b=3c
TH2: a=-2b=3c
TH3: a=2b=-3c
TH1: -a=2b=3c
Vậy, có 3 mặt phẳng (P) thỏa mãn yêu cầu đề bài.