cho hàm số y=(m-1)x+2-m (với m khác 1) (1) có đồ thị là (d)
a) tìm m để hàm số (1) đồng biến.
b)tìm m để (d) đi qua điểm A(-1;2)
c)tìm m để (d) song song với đồ thị hàm số y=3x-11
d)tìm điểm cố định mà (d) đi qua với mọi m?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$
Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$
b. Để đths đi qua điểm $A(-1;1)$ thì:
$y_A=(m-1)x_A+m$
$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$
$\Leftrightarrow 1=1$ (luôn đúng)
Vậy đths luôn đi qua điểm A với mọi $m$
c.
$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$
Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:
\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)
d,
ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$
$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$
$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$
a: Để hàm số nghịch biến thì m-2<0
hay m<2
c: Thay x=1 và y=2 vào (d), ta được:
m-2+m=2
hay m=2
a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:
4(m+1)-3=1
=>4m+4-3=1
=>4m+1=1
hay m=0
b: Để hai đường vuông góc thì 5(m+1)=-1
=>m+1=-1/5
hay m=-6/5
c: Thay x=2 vào y=3x-1, ta được:
\(y=3\cdot2-1=5\)
Thay x=2 và y=5 vào (d), ta được:
2(m+1)-3=5
=>2(m+1)=8
=>m+1=4
hay m=3
a: Thay x=1 và y=4 vào (1), ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
Thay m=3 vào y=mx+1, ta được:
\(y=3\cdot x+1=3x+1\)
Vì a=3>0
nên hàm số y=3x+1 đồng biến trên R
b: Để đồ thị hàm số (1) song song với (d) thì
\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)
=>m-1=0
=>m=1
1) a) để hàm số (1) đồng biến \(\Leftrightarrow a>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)
b) Để (d) cắt (d') tại 1 điểm trên trục hoành \(\Leftrightarrow\left\{{}\begin{matrix}a\ne a'\\\dfrac{b}{a}=\dfrac{b'}{a'}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne2\\\dfrac{3}{m-2}=\dfrac{-4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\3=-2m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m=\dfrac{1}{2}\left(n\right)\end{matrix}\right.\)
Vậy \(m=\dfrac{1}{2}\)Thì (d) cắt (d') tại 1 điểm trên trục hoành
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
a) Hàm số (1) đồng biến khi: \(m-1>0\Rightarrow m>1\)
b) (d) đi qua điểm A(-1;2) suy ra x = -1 và y = 2
Thay x = -1 và y = 2 vào hàm số (1) ta có: \(2=\left(m-1\right)\times\left(-1\right)+2-m\Leftrightarrow2=1-m+2-m\)
\(2=-2m+3\Leftrightarrow m=\frac{1}{2}\)
bẹn ơi bẹn có bài nào khó hơn cho mình làm được k giợ