Trong mặt phẳng Oxy, cho d: x-3y-4=0 và được tròn (C) có tâm I(0;2) bán kính R=2. Tìm tọa độ điểm M thuộc d,N thuộc (C) sao cho chúng đối xứng với nhau qua A (3;1)
Giúp em em cần gấp :(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bán kính: \(R=2\sqrt{5}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)
Giao điểm của d và (C) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm
b, Gọi H là trung điểm AB.
Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)
Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)
\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)
Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)
\(\Rightarrow\widehat{HBI}=30^o\)
Khi đó:
\(IH=d\left(I;\Delta\right)\)
\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)
\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)
\(\Leftrightarrow m=5\pm5\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)
a, Bán kính: \(R=2\sqrt{545}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)
Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow...\)
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
gọi H là trung điểm AB
=>IH⊥AB
=>\(d_{\left(I,d\right)}=\dfrac{\left|1\cdot1-1\cdot1+2\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
=>IH=\(\sqrt{2}\)
Mà HB=\(\dfrac{AB}{2}\)=1
Xét ΔIHB vuông tại H có:
IB=\(\sqrt{IH^2+HB^2}=\sqrt{2+1}=\sqrt{3}\)
=>R=\(\sqrt{3}\)
Vậy đường tròn tâm I (1; -1); R=\(\sqrt{3}\) là:
(x-1)2+(y+1)2=3
Ta có d(I;d)=\(\sqrt{10}\ge2\) => d không cắt đường tròn Phương trình đường tròn x^2+(y-2)^2=4
Đặt M(a,b),N(c,d)
Vì M thuộc d,N thuộc đường tròn, A là trung điểm của MN
\(\hept{\begin{cases}a-3b-4=0\left(1\right)\\c^2+\left(d-2\right)^2=4\left(2\right)\\a+c=6,b+d=2\left(3\right)\end{cases}}\)
Từ (1) và (3)
=> 6-c-3(2-d)-4=0
=>c-3d=-4
Khi đó thế vào (2)
=>\(\left(3d-4\right)^2+\left(d-2\right)^2=4\)
=> \(10d^2-28d+16=0\)
=>\(\orbr{\begin{cases}d=2\\d=\frac{4}{5}\end{cases}}\)
+ d=2 => M(4;0),N(2;0)
+ d=4/5=> M(38/5;6/5),N(-8/5,4/5)