K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

23 tháng 7 2021

pt đt AC sai r ạ

 

7 tháng 4 2016

B A D D C H K M I

Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)

Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)

Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).

I là trung điểm của AD, suy ra A(-1;7)

\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)

Tọa độ điểm B, C là nghiệm của hệ phương trình :

\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)

Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)

Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)

   hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)

31 tháng 3 2016

MAT DAY LOP 6,7,8,9 MA DUA LOP 1 , MAT DAY DI MA

11 tháng 4 2019

28 tháng 11 2021

Tham khảo!

 

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.

7 tháng 4 2016

I C M A D B

Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC

Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.

Viết phương trình đường thẳng AC : \(x-2y+9=0\)

Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên

\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)

                                                  \(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)

Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)

Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)

Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)

Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)