K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

1 tháng 6 2017


7 tháng 4 2016

B A D D C H K M I

Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)

Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)

Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).

I là trung điểm của AD, suy ra A(-1;7)

\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)

Tọa độ điểm B, C là nghiệm của hệ phương trình :

\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)

Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)

Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)

   hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)

21 tháng 3 2021

undefined

4 tháng 1 2017

A B → = 3 ; 12 ,   A C → = 4 ; − 1 ⇒ ( A B )   ⃗ . ( A C )   ⃗ = 3 . 4 + 12 . ( - 1 ) = 0   ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B

13 tháng 4 2018

Ta có A H → = a + 3 ; b  ;   B C → = − 1 ; 6 B H → = a − 3 ; b  ;  A C → = 5 ; 6 .  

Từ giả thiết, ta có:

               A H → . B C → = 0 B H → . A C → = 0 ⇔ a + 3 . − 1 + b .6 = 0 a − 3 .5 + b .6 = 0 ⇔ a = 2 b = 5 6 ⇒ a + 6 b = 7.

 Chọn C.

15 tháng 2 2018

Ta có A H → = a + 3 ; b  ;   B C → = − 1 ; 6 B H → = a − 3 ; b  ;  A C → = 5 ; 6 .  

Từ giả thiết, H là trực tâm tam giác ABC nên ta có:

      A H → . B C → = 0 B H → . A C → = 0 ⇔ a + 3 . − 1 + b .6 = 0 a − 3 .5 + b .6 = 0 ⇔ a = 2 b = 5 6 ⇒ a + 6 b = 7.  

Chọn C.

6 tháng 2 2017