K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

6 tháng 3 2023

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

5 tháng 9 2018

Đáp án B

20 tháng 9 2017

Đáp án D

10 tháng 6 2018

15 tháng 6 2019

6 tháng 11 2018

Phương trình mặt phẳng (ABC): x+y+z-1=0 

Phương trình mặt phẳng (BCD): x=0 

Phương trình mặt phẳng (CDA): y=0 

Phương trình mặt phẳng (ĐBA): z=0 

Gọi I(x;y;z) là điểm cách đều bốn mặt phẳng (ABC),(BCD),(CDA),(DBA)

⇒ x + y + z - 1 3 = x = y = z

TH1: x = y = z ⇒ 3 x - 1 3 = x

⇔ [ x = 1 3 + 3 x = 1 3 - 3 ⇒ I 1 3 + 3 ; 1 3 + 3 ; 1 3 + 3

hoặc  I 1 3 - 3 ; 1 3 - 3 ; 1 3 - 3

TH2: - x = y = z ⇒ - x - 1 3 = x

⇔ [ x = 1 3 - 1 x = - 1 3 + 1 ⇒ I 1 3 - 1 ; - 1 3 - 1 ; - 1 3 - 1

hoặc  I - 1 3 + 1 ; 1 3 + 1 ; 1 3 + 1

TH3: x = y = - z ⇒ x - 1 3 = x

hoặc  I 1 3 - 1 ; - 1 3 - 1 ; 1 3 - 1

TH4: x = y = - z ⇒ x - 1 3 = x

⇔ [ x = - 1 3 - 1 x = 1 3 + 1 ⇒ I - 1 3 - 1 ; - 1 3 - 1 ; 1 3 - 1

hoặc  I 1 3 + 1 ; 1 3 + 1 ; - 1 3 + 1

Vậy, có tất cả 8 điểm thỏa mãn.

Chọn đáp án C.

7 tháng 3 2018

Đáp án D

Gọi I(a;b;c) là điểm cách đều bốn mặt phẳng (ABC), (BCD),(CDA), (DAB)

Khi đó, ta có

Suy ra có 8 cặp (a;b;c) thỏa mãn (*).

6 tháng 1 2019

Đáp án A.

Ta có   A B ¯ = 0 ; 1 ; − 2 ; A C ¯ = 1 ; 2 ; 1 ⇒ A B ¯ ; A C ¯ = 5 ; − 2 ; − 1

Suy ra phương trình mặt phẳng (ABC) là   5 x − 2 y − z − 6 = 0.

Do đó, điểm  thuộc mặt phẳng (ABC).

Vậy có vô số mặt phẳng cách đều bốn điểm đã cho.

1 tháng 11 2017

Đáp án A

⇒ A B → , A C → , A D →  đồng phẳng suy ra tồn tại vô số mặt phẳng cách đều 4 điểm trên

21 tháng 6 2018

Đáp án A.

Ta có  

Suy ra phương trình mặt phẳng (ABC) là  5x -2y -z -6 =0

Do đó, điểm D(4;3;8) thuộc mặt phẳng (ABC).

Vậy có vô số mặt phẳng cách đều bốn điểm đã cho.

13 tháng 5 2017

⇒ A B → ,   A C → ,   A D →  đồng phẳng suy ra tồn tại vô số mặt phẳng cách đều 4 điểm trên