M.n giúp mk nha!
Với bộ số (6;5;2) ta có đẳng thức \(\frac{65}{26}=\frac{5}{2}.\) Tìm tất cả các bộ số (a;b;c) gồm các chữ số trong hệ thập phân a;b;c đôi một khác nhau và khác 0 sao cho đẳng thức \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\) đúng.
Điều kiện \(0< a,b,c\le9\) và \(a\ne b,\)\(b\ne c,\)\(c\ne a.\)
Ta viết lại \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\left(10a+b\right)c=\left(10c+a\right)b\)\(\Leftrightarrow\)\(10ac-10bc=ab-bc\)
\(\Leftrightarrow\)\(2.5c\left(a-b\right)=b\left(a-c\right)\)(1)
Do \(c\ne0\) và \(a\ne b\) nên \(b\left(a-c\right)\) chia hết cho 5. Xảy ra 3 trường hợp:
- TH1: \(b\) chia hết cho 5, mà \(0< b\le9\) \(\Rightarrow\)\(b=5.\)
(1) \(\Leftrightarrow\)\(2.5.c\left(a-5\right)=5\left(a-c\right)\)\(\Leftrightarrow\)\(2c\left(a-5\right)=a-c\)\(\Leftrightarrow\)\(2ac-a-9c=0\)(2)
\(\Leftrightarrow\)\(a=2ac-9c=c\left(2a-9\right)\)\(\Leftrightarrow\)\(c=\frac{a}{2a-9}\)
Mặt khác (2) \(\Leftrightarrow\)\(2ac=a+9c\)\(\Leftrightarrow\)\(2c=\frac{a+9c}{a}=1+\frac{9c}{a}=1+\frac{\frac{9a}{2a-9}}{a}=1+\frac{9}{2a-9}\)
Do \(2c>0\) nên \(2a-9>0,\) do đó \(2a-9\in\left\{3;9\right\}\)Ta có \(2a-9\ne1\) vì \(a\ne c.\)
Ta tìm được \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right).\)
- TH2: \(a-c\) chia hết cho 5 nên \(a-c=5\)\(\Rightarrow\)\(a=c+5\)
(1) \(\Leftrightarrow\)\(2c\left(c+5-b\right)=b\)\(\Leftrightarrow\)\(b=\frac{2c^2+10c}{2c+1}\)\(\Leftrightarrow\)\(2b=2c+9-\frac{9}{2c+1}\)
Suy ra \(2c+1\in\left\{3;9\right\}\) do \(c\ne0.\) Tìm được \(\left(a;b;c\right)=\left(6;4;1\right),\left(9;8;4\right).\)
- TH3: \(c=a+5\)
(1) \(\Leftrightarrow\)\(2\left(a+5\right)\left(a-b\right)=-b\)\(\Leftrightarrow\)\(b=\frac{2a^2+10a}{2a-9}\)\(\Leftrightarrow\)\(2b=2a+19-\frac{9.19}{2a-9}\)
Suy ra \(b>9,\) ta không xét.
Vậy có 4 bộ số thỏa đề bài: \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right),\left(6;4;1\right),\left(9;8;4\right).\)
a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2)