Cho mặt cầu (S) có đường kính AB, biết rằng A(6;2;-5), B(-4;0;7). Tìm tọa độ tâm I và bán kính r của mặt cầu (S)
A. I 1 ; 1 ; 1 , r = 2 62
B. I - 1 ; - 1 ; - 1 , r = 248
C. I 1 ; 1 ; 1 , r = 62
D. I 1 ; 1 ; 1 , r = 62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tâm của mặt cầu (S) là trung điểm I (1; 1; 1) của đoạn thẳng AB và bán kính của mặt cầu (S) là R = IA = √62
(α) tiếp xúc với (S) tại A
⇒ (α) ⊥ IA
⇒ (α) nhận là vectơ pháp tuyến
(α) đi qua A(6; 2; -5)
⇒ (α): 5x + y – 6z – 62 = 0.
Chọn B.
Mặt phẳng (ABC) cắt mặt cầu theo đường tròn ngoại tiếp tam giác ABC.
Ta có
hay A là hình chiếu vuông góc của I trên mặt phẳng (P)
Do đó ta dễ dàng tìm được
Chọn B.
Chọn D