Cho 3 số tỉ lệ với các số 10;11;12.Giá trị P=\(\frac{a+6b-8c}{a+3b-4c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/15910063721.html
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Gọi x,y,z là những phân số tối giản cần tìm
Theo bài ra ta có:
\(x:y:z=\dfrac{2}{5}:\dfrac{3}{4}:\dfrac{5}{6}=24:45:50\)
\(\Rightarrow\dfrac{x}{24}=\dfrac{y}{45}=\dfrac{z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x+y+z}{24+45+50}=\dfrac{187}{60}:119=\dfrac{11}{420}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{22}{35}\\y=\dfrac{33}{28}\\z=\dfrac{55}{42}\end{matrix}\right.\)
Lời giải:
Gọi 3 phân số đó là $\frac{a}{b}, \frac{c}{d}, \frac{e}{f}$. Theo đề ta có:
$\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{1}{10}(*)$
$\frac{a}{2}=\frac{c}{3}=\frac{e}{4}$
$\frac{b}{5}=\frac{d}{2}=\frac{f}{1}$
Đặt $\frac{a}{2}=\frac{c}{3}=\frac{e}{4}=k\Rightarrow a=2k; c=3k; e=4k$
Vì $\frac{b}{5}=\frac{d}{2}=\frac{f}{1}\Rightarrow b=5f; d=2f$
Khi đó, thay vào $(*)$ ta có: $\frac{2k}{5f}+\frac{3k}{2f}+\frac{4k}{f}=\frac{1}{10}$
$\Leftrightarrow \frac{59}{10}\frac{k}{f}=\frac{1}{10}$
$\Rightarrow \frac{k}{f}=\frac{1}{59}$
$\Rightarrow f=59k$
Vì $\frac{e}{f}$ là phân số tối giản nên $ƯCLN(e,f)=ƯCLN(4k,f)=1$
$\Rightarrow ƯCLN(k,f)=1$. Mà $f=59k$ nên $k=1$. Kéo theo $f=59$. Khi đó 3 phân số cần tìm là:
$\frac{2k}{5f}=\frac{2}{295}; \frac{3k}{2f}=\frac{3}{118}; \frac{4k}{f}=\frac{4}{59}$
\(\left\{{}\begin{matrix}y=-0,4x\\x=10z\end{matrix}\right.\)
\(\Rightarrow y=-0,4.10z=-4z\)
Nên y tỉ lệ thuận với z và có tỉ lệ là -4.
Ta có tỉ thức : \(\dfrac{3}{7} = \dfrac{9}{{21}}\)
Xét \(\dfrac{{3 + 9}}{{7 + 21}}\) = \(\dfrac{{12}}{{28}}\) = \( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 4 )
Xét \(\dfrac{{3 - 9}}{{7 - 21}}\) = \(\dfrac{{ - 6}}{{ - 14}}\)\( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 2 )
Sau khi thực hiện tính các tỉ số ta thấy các kết quả sau khi tối giản của tỉ số bằng với các tỉ só trong tỉ lệ thức đã cho.
ket qua là 2 bạn nhé
2 nhé bạn