K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 5 2020

Lấy tích phân 2 vế:

\(\int\limits^1_0\left[f'\left(x\right)\right]^2dx+\int\limits^1_04\left(6x^2-1\right)f\left(x\right)dx=\int\limits^1_0\left(40x^6-44x^4+32x^2-4\right)dx=\frac{376}{105}\)

Xét \(I=\int\limits^1_0\left(6x^2-1\right)f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\left(6x^2-1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2x^3-x\end{matrix}\right.\)

\(\Rightarrow I=\left(2x^3-x\right)f\left(x\right)|^1_0-\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx=1-\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+4-4\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx=\frac{376}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2\left(2x^3-x\right)\right]^2dx-\int\limits^1_04\left(2x^3-x\right)^2dx=-\frac{44}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2\left(2x^3-x\right)\right]^2dx-\frac{44}{105}=-\frac{44}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-\left(4x^3-2x\right)\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)=4x^3-2x\Rightarrow f\left(x\right)=x^4-x^2+C\)

\(f\left(1\right)=1\Rightarrow1-1+C=1\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=x^4-x^2+1\)

\(\Rightarrow\int\limits^1_0x\left(x^4-x^2+1\right)dx=\frac{5}{12}\)

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

3 tháng 5 2018

Đáp án là B

7 tháng 4 2018

Ta có

 

Ta có:  f ( 0 ) = 1 ⇒ 1 = 3 C

Xét hàm  trên [-2;1]

Ta có

  

Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒  Hàm số đồng biến trên (-2;1)

Suy ra  m a x - 2 ; 1   f ( x ) = f ( 1 ) = 16 3

Chọn đáp án C.

16 tháng 2 2017

2 tháng 4 2018

3 tháng 2 2017

24 tháng 7 2018

Đáp án B

9 tháng 12 2018

Đáp án A

21 tháng 8 2017

Chọn đáp án A.

10 tháng 10 2018