- Số M được chia thành ba phần tỉ lệ với 2/5;3/4;1/6.Biết tổng bình phương của ba số đó = 24309.Tìm số M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu tương tự :
Gọi x,y,z là 3 phần chia ra từ A lần lượt tỉ lệ nghịch với 5, 2 và 4.
Theo đề bài, ta có: x^3 + y^3 + z^3 = 9512 (1)
x + y + z = A (2)
Gọi k là hằng số của hệ số nghịch đảo của x,y,z và 5,2,4.
Ta có x = k/5, y=k/2, z=k/4 (3)
Thay (3) vào (1) ta có:
k^3/5^3 + k^3/2^3 + k^3/4^3 = 9512
-> k^3/125 + k^3/8 + k^3/64 = 9512
-> 64*k^3 + (125*8)k^3 + 125*k^3 = 9512 * 125 * 64
-> (64 + 1000 + 125)* k^3 = 76096000
-> k^3 = 76090000 / 1189 = 64000 = 64 * 1000 = 4^3 * 10^3 = (4*10)^3
-> k = 40
Suy ra: x = k/5 = 8, y = k/2 = 20, z = k/4 = 10
Theo (2) ta suy ra A = x+y+z = 8+20+10 = 38
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
gọi ba phần là x,y,z
Ta có : x : y : z = \(\frac{1}{5}:\frac{1}{2}:\frac{1}{4}=4:10:5\)
hay \(\frac{x}{4}=\frac{y}{10}=\frac{z}{5}=k\)
\(\Rightarrow k^3=\frac{x^3}{64}=\frac{y^3}{1000}=\frac{z^3}{125}=\frac{x^3+y^3+z^3}{64+1000+125}=\frac{9512}{1189}=8\)
\(\Rightarrow k=2\)
Vậy : \(\frac{x+y+z}{4+10+5}=2\)suy ra \(x+y+z=2.19=38\)
\(\Rightarrow A=38\)
Gọi 3 phần đó đó là a,b,c
Vì a,b,c tỉ lệ nghịch với 5;2;4 nên a,b,c tỉ lệ thuận với 1/5,1/2,1/4 tức là
\(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}=\frac{c}{\frac{1}{4}}\Rightarrow5a=2b=4c\Rightarrow\frac{5a}{20}=\frac{2b}{20}=\frac{4c}{20}\Rightarrow\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
Đặt \(k=\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
\(\Rightarrow k^3=\frac{a^3}{64}=\frac{b^3}{1000}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{64+1000+125}=\frac{9512}{1189}=8\)
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=2\\\frac{b}{10}=2\\\frac{c}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}a=8\\b=20\\c=10\end{cases}}}\)
=> A = a + b + c = 8 + 20 + 10 = 38
gọi 3 phần lần lượt là a,b,c
=>\(\frac{a}{2}=\frac{b}{3}\)và \(a.3=c.5\)=>\(\frac{a}{2}=\frac{b}{3}\)và\(\frac{a}{5}=\frac{c}{3}\)
=>\(\frac{a}{2.5}=\frac{b}{3.5}\)và \(\frac{a}{5.2}=\frac{c}{3.2}\)
=>\(\frac{a}{10}=\frac{b}{15}\)và \(\frac{a}{10}=\frac{c}{6}\)
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)và a+b+c=930
áp dụng t/c dãy tỉ số bằng nhau
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{10+15+6}=\frac{930}{31}=30\)
=>\(\hept{\begin{cases}a=30.10\\b=30.15\\c=30.6\end{cases}}\)=>\(\hept{\begin{cases}a=300\\b=450\\c=180\end{cases}}\)
vậy 3 phần lần lượt là 300;450;180
gọi 3 phần đó là a;b;c
ta có:a và b tỉ lệ với 5 và 6=>a/5=b/6=>a/20=b/24(10
b và c tỉ lệ với 8 và 9=>b/8=c/9=>b/24=c/27(2)
từ 1,2=>a/20=b/24=c/27 và c-b=150
áp dụng... ta có:
a/20=b/24=c/27=c-b/27-24=150/3=50
từ a/20=50=>a=1000
b/24=50=>b=1200
c/27=50=>c=1350
=>M=a+b+c=1000+1200+1350=3550
tick nhé
mỗi đề bài cậu gọi là a;b;c rồi áp dụng tính chất dãy tỉ số bằng nhau nhé
gọi 3 phần đó là a,b,c
Theo bài ra : a,b,c tỉ lệ với 2/5 ; 3/4 ; 1/6 ; a2 + b2 + c2 = 24309
\(\Rightarrow\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)
\(\Rightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{4}{25}+\frac{9}{16}+\frac{1}{36}}=\frac{24309}{\frac{2701}{3600}}=32400\)
\(\Rightarrow a^2=5184\Rightarrow\orbr{\begin{cases}a=72\\-72\end{cases}}\); \(b^2=18225\Rightarrow\orbr{\begin{cases}b=135\\b=-135\end{cases}}\); \(c^2=900\Rightarrow\orbr{\begin{cases}c=30\\c=-30\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}M=72+135+30=237\\M=\left(-72\right)+\left(-135\right)+\left(-30\right)=-237\end{cases}}\)
Thank