K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

a) Ta có:

      1/( 2.3 ) = ( 3 - 2 )/( 2.3 )

                     = 3/( 2.3 ) - 2/( 2.3 )

                     = 1/2 - 1/3.

     1/( 3.4 ) = ( 4 - 3 )/( 3.4 )

                     = 4/( 3.4 ) - 3/( 3.4 )

                     = 1/3 - 1/4.

b) 

Ta có:

A = 1/( 5.6 ) + 1/( 6.7 ) + 1/( 7.8 ) + ..... + 1/( 2019.2020 )

A = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ..... + 1/2019 - 1/2020

A = 1/5 - 1/2020

A = 403/2020

Vậy A = 403/2020.

9 tháng 4 2020

a) Ta có: \(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

b) Ta có: \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.......+\frac{1}{2019.2020}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+........+\frac{1}{2019}-\frac{1}{2020}\)

\(=\frac{1}{5}-\frac{1}{2020}=\frac{403}{2020}\)

23 tháng 4 2017

a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100

= 1 - 1/100

= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)

23 tháng 4 2017

a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100

1-1/100=99/100<1

cho mk nha ^^

16 tháng 4 2017

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{44}{45}\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{44}{45}\)

=> \(1-\frac{1}{x+1}=\frac{44}{45}\)

=> \(\frac{x}{x+1}=\frac{44}{45}\)

=> x = 44

b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

.................

\(\frac{1}{45^2}< \frac{1}{44.45}=\frac{1}{44}-\frac{1}{45}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1\)

16 tháng 4 2017

a) 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/(x+1)=1-1/(x+1)=x/(x+1)=44/45

=> x=44

b/ 1/22 < 1/1.2; 1/32 < 1/2.3; ....; 1/452 < 1/44.45

=> A < 1/1.2+1/2.3+...+1/44.45=1-1/45=44/45 < 1

=> A < 1

15 tháng 9 2017

câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)

suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6

3a^2+9a+6=3a^2+9a+6

câu b) 

17 tháng 9 2017

^ là gì vậy bạn

15 tháng 12 2015

A=3 /1^2.2^2 +5 / 2^2.3^2 +7/3^2.4^2 +...+ 19 /9^2.10^2

=1/1^2-1/2^2+1/2^2-1/3^2+1/3^2-1/4^2+....+1/9^2-1/10^2

=1/1^2-1/10^2

=99/100

=0,99

vậy A< 1

29 tháng 2 2016

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

19 tháng 4 2016

49/50

19 tháng 6 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018+2019}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

=\(1-\frac{1}{2019}< 1\)

19 tháng 6 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(A=\frac{1}{1}-\frac{1}{2019}< 1\)

Vậy \(A< 1\)

11 tháng 2 2022

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\).

b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)