Trong không gian Oxyz, cho mặt cầu (S) tâm I(−1;0;2) đi qua điểm A(0;1;1). Xét các điểm B, C, D thuộc (S) sao cho tam giác BCD vuông cân tại B, AB = AC = AD. Thể tích tứ diện ABCD có giá trị lớn nhất bằng
A. 8 3
B. 16 3 27
C. 32 3 27
D. 4 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt cầu (S): (x-a)²+(y-b)²+(z-c)²=R² có tâm là I(a;b;c) và bán kính là R.
Do đó, mặt cầu (S): (x-1)²+(y+2)²+z²=25 có tâm I(1;-2;0) và bán kính R=5.