Cho ba điểm di động A( 1-2m; 4m) ; B( 2m; 1-m) và C( 3m-1; 0). Gọi G là trọng tâm tam giác ABC thì G nằm trên đường thẳng nào sau đây:
A. y- x= 1
B. y= 2x+ 1
C. y= x+1/3
D. y= x+ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào link này tham khảo nhé .
https://olm.vn/hoi-dap/question/724228.html
Vì \(|x|\ge0\Rightarrow\left|x\right|-1\ge-1\Rightarrow-\left||x|-1\right|\le-1\Rightarrow-\left||x|-1\right|+5\le4\)
Vậy Max cửa bt là 4
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{AE}=\left(a+1;b+2\right)\) mà E di động trên đường thẳng AB nên A,B,E thẳng hàng tương đương với \(\dfrac{a+1}{4}=\dfrac{b+2}{4}\) <=> \(a=b+1\).Vậy E(b+1;b)
Đặt \(\overrightarrow{u}=2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\) => \(\overrightarrow{u}=\left(-1-4b;3-4b\right)\)
có : \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|=\left|\overrightarrow{u}\right|=\sqrt{\left(-1-4b\right)^2+\left(3-4b^2\right)}\)
Đặt : 1-4b = t => \(\left\{{}\begin{matrix}-1-4b=t-2\\3-4b=t+2\end{matrix}\right.\) khi đó \(\left|\overrightarrow{u}\right|=\sqrt{\left(t-2\right)^2+\left(t+2\right)^2}=\sqrt{2t^2+8}\ge2\sqrt{2}\)
\(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\)đạt GTNN khi và chỉ khi t =0 <=> b=1/4 => a=5/4
vậy \(a^2-b^2=\dfrac{3}{2}\)
Thời gian để robot rẽ là: 3 phút.
Thời gian để robot di chuyển là: 15 - 3= 12 (phút).
Quãng đường AB robot đi được là: 12*2 =24 (m).
Đáp số: 24 (m).
Gọi E là điểm thỏa mãn và F là điểm thỏa mãn
Khi đó
Thay toạ độ các điểm E, F vào phương trình mặt phẳng (P) có do đó hai điểm E, F nằm khác phía với mặt phẳng (P) vì vậy
Vì vậy
Dấu bằng đạt tại
Chọn đáp án A.