K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2023

Gọi G là trọng tâm tam giác ABC. Ta có:

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)

Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)

Gọi I là tâm  tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)

Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\)  (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))

Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)

Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG. 

Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).

M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)

Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.

 

 

26 tháng 5 2018

Đáp án D.

Vậy phương trình mặt cầu cần tìm là  

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow {OA}  = \left( {2;1} \right)\) ( do A(2; 1)) và \(\overrightarrow {OB}  = \left( {3;3} \right)\) (do B (3; 3)).

Hai vectơ này không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)).

Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

b) Các điểm O, A, B không thẳng hàng nên OABM là một hình hành khi và chỉ khi \(\overrightarrow {OA}  = \overrightarrow {MB} \).

Do \(\overrightarrow {OA}  = \left( {2;1} \right),\quad \overrightarrow {MB}  = \left( {3 - x;3 - y} \right)\) nên

\(\overrightarrow {OA}  = \overrightarrow {MB}  \Leftrightarrow \left\{ \begin{array}{l}2 = 3 - x\\1 = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

Vậy điểm cần tìm là M (1; 2).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

17 tháng 9 2019

24 tháng 10 2017

Chọn A

Gọi I (a;b;c)

Ta có IA=IO=R ó hình chiếu của I lên OA là trung điểm  của OA.

Theo bài ra ta có:


7 tháng 3 2019

Đáp án A.

28 tháng 2 2017

9 tháng 5 2017

7 tháng 4 2018