Cho ba số x, y, z tỉ lệ với 3, 4, 5;. Tính:
P = 2017x + 2018y - 2019z / 2017x - 2018y + 2019z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biết x và y tỉ lệ thuận với 3 và 5, y và z tỉ lệ thuận với 4 và 5, x+y+z = 456 . Tính ba số trên
Theo đề ta có: x/3 = y/5; y/4 = z/5
x/3 = y/5 => x/12 = y/20; y/4 = z/5 => y/20 = z/25
=> x/12 = y/20 = z/25
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/12 = y/20 = z/25 = x+y+z/12+20+25 = 456/57 = 8
x/12 = 8 => x = 96
y/20 = 8 => x = 160
z/25 = 8 => x = 200
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
Lời giải:
Theo bài ra ta có:
$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$
$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$
Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$
$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:
$3x^2-y^2+z^2=876$
$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$
$\Rightarrow 219k^2=876$
$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$
Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$
Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$
Theo bài ra ta có:
\(x:y=2:3;x:z=4:3\)và \(x-y-z=50\)
Vì \(x:y=2:3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)
Vì \(x:z=4:3\)
\(\Rightarrow\frac{x}{4}=\frac{z}{3}\)\(\Rightarrow\frac{x}{8}=\frac{z}{6}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{6}=\frac{x-y-z}{8-12-6}=\frac{50}{-10}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5.5=-40\\y=-5.12=-60\\z=-5.6=-30\end{cases}}\)
Vậy ...
#)Giải :
Ta xét :
x,y tỉ lệ thuận với 2 và 3 \(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
x,z tỉ lệ nghịch với 4 và 6 \(\Rightarrow4x=3z\Rightarrow\frac{x}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{8}\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\Rightarrow\frac{x-y+z}{6-9+8}=\frac{50}{5}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=10\\\frac{y}{9}=10\\\frac{z}{8}=10\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=90\\z=80\end{cases}}}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)
nên \(\dfrac{x}{12}=\dfrac{y}{20}\left(1\right)\)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{20}=\dfrac{z}{25}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{25}=\dfrac{x+y+z}{12+20+25}=\dfrac{456}{57}=8\)
Do đó: x=96; y=160; z=200
\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(3\)nên \(\frac{x}{2}=\frac{y}{3}\).
\(x\)và \(z\)tỉ lệ nghịch với \(4\)và \(3\)nên \(\frac{x}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}\Leftrightarrow\frac{x}{3}=\frac{z}{4}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{3}=\frac{z}{4}\end{cases}}\Leftrightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{9}=\frac{z}{8}=\frac{x-y+z}{6-9+8}=\frac{50}{5}=10\)
\(\Leftrightarrow\hept{\begin{cases}x=10.6=60\\y=10.9=90\\z=10.8=80\end{cases}}\)
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
Theo bài ra, ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\) \(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3k+2018.4k-2019.5k}{2017.3k-2018.4k+2019.5k}\)
\(P=\frac{6051k+8072k-10095k}{6051k-8072k+10095k}=\frac{k\left(6051+8072-10095\right)}{k\left(6051-8072+10095\right)}=\frac{4028}{8074}=\frac{2014}{4037}\)
Ta có:Đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thay vào đề bài
\(\Rightarrow P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028k}{8074k}=\frac{2014}{4037}\)
Vậy\(P=\frac{2014}{4037}\)